DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled variations ranging from 1.5 to 70 billion parameters to construct, experiment, and responsibly scale your generative AI ideas on AWS.
In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled variations of the models as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language model (LLM) developed by DeepSeek AI that uses support finding out to boost thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A key distinguishing feature is its support knowing (RL) action, which was used to improve the design's reactions beyond the standard pre-training and tweak process. By incorporating RL, DeepSeek-R1 can adapt better to user feedback and goals, eventually improving both significance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, meaning it's geared up to break down complicated inquiries and factor through them in a detailed manner. This assisted thinking procedure permits the model to produce more precise, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT abilities, aiming to create structured responses while focusing on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has captured the market's attention as a flexible text-generation model that can be incorporated into numerous workflows such as agents, rational thinking and data analysis jobs.
DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion criteria, allowing effective reasoning by routing questions to the most relevant expert "clusters." This technique enables the model to focus on different issue domains while maintaining overall efficiency. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 model to more efficient architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more effective designs to imitate the behavior and thinking patterns of the bigger DeepSeek-R1 model, using it as a teacher model.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest releasing this model with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, avoid damaging content, and assess designs against essential safety criteria. At the time of writing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create multiple guardrails tailored to different use cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing security controls throughout your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you require access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limitation increase, create a limitation boost request and connect to your account team.
Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For guidelines, see Set up authorizations to use guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to present safeguards, avoid damaging content, and examine designs against essential security requirements. You can execute safety steps for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to examine user inputs and design responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The general flow includes the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After getting the design's output, another guardrail check is used. If the output passes this final check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following sections demonstrate reasoning using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, select Model brochure under Foundation models in the navigation pane.
At the time of writing this post, you can utilize the InvokeModel API to invoke the design. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and pick the DeepSeek-R1 model.
The model detail page offers important details about the design's abilities, prices structure, and application guidelines. You can find detailed use guidelines, consisting of sample API calls and code snippets for combination. The model supports different text generation tasks, including material development, code generation, and concern answering, using its reinforcement discovering optimization and CoT reasoning abilities.
The page also includes release options and licensing details to assist you get going with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, choose Deploy.
You will be triggered to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters).
5. For Number of circumstances, enter a number of instances (between 1-100).
6. For example type, pick your instance type. For optimum efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested.
Optionally, you can configure innovative and facilities settings, including virtual private cloud (VPC) networking, service function authorizations, and file encryption settings. For many use cases, the default settings will work well. However, for production implementations, you might wish to review these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to begin utilizing the design.
When the release is complete, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock play ground.
8. Choose Open in play ground to access an interactive user interface where you can experiment with various triggers and change model criteria like temperature level and optimum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for ideal results. For instance, material for reasoning.
This is an exceptional method to check out the design's reasoning and text generation abilities before incorporating it into your applications. The playground provides immediate feedback, assisting you understand how the model reacts to numerous inputs and letting you fine-tune your triggers for optimum results.
You can rapidly evaluate the design in the play area through the UI. However, to invoke the released design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint
The following code example shows how to perform reasoning using a deployed DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime customer, configures reasoning criteria, and sends out a request to create text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your data, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart offers 2 hassle-free approaches: utilizing the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both methods to help you pick the approach that finest fits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to create a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The design browser displays available models, with details like the supplier name and design abilities.
4. Search for DeepSeek-R1 to view the DeepSeek-R1 design card.
Each model card shows crucial details, including:
- Model name
- Provider name
- Task category (for example, Text Generation).
Bedrock Ready badge (if suitable), showing that this model can be registered with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to invoke the model
5. Choose the model card to see the model details page.
The model details page consists of the following details:
- The model name and service provider details. Deploy button to deploy the design. About and Notebooks tabs with detailed details
The About tab consists of important details, such as:
- Model description. - License details.
- Technical requirements.
- Usage guidelines
Before you release the design, it's suggested to examine the design details and license terms to validate compatibility with your usage case.
6. Choose Deploy to continue with implementation.
7. For Endpoint name, use the automatically created name or garagesale.es develop a custom-made one.
- For example type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, enter the number of instances (default: 1). Selecting suitable circumstances types and counts is important for expense and performance optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time inference is selected by default. This is optimized for sustained traffic and low latency.
- Review all configurations for accuracy. For this design, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
- Choose Deploy to deploy the design.
The deployment procedure can take several minutes to complete.
When deployment is total, your endpoint status will change to InService. At this moment, the model is prepared to accept reasoning demands through the endpoint. You can keep an eye on the deployment development on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the implementation is total, you can conjure up the model using a SageMaker runtime client and integrate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the essential AWS consents and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for inference programmatically. The code for releasing the design is supplied in the Github here. You can clone the notebook and range from SageMaker Studio.
You can run additional requests against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as shown in the following code:
Clean up
To prevent undesirable charges, finish the steps in this area to tidy up your resources.
Delete the Amazon Bedrock Marketplace release
If you released the design using Amazon Bedrock Marketplace, complete the following steps:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace implementations. - In the Managed implementations area, locate the endpoint you wish to delete.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're erasing the correct release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business construct ingenious solutions utilizing AWS services and accelerated calculate. Currently, he is focused on developing methods for fine-tuning and optimizing the inference efficiency of big language designs. In his leisure time, Vivek enjoys treking, enjoying films, and attempting various foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about building services that assist customers accelerate their AI journey and unlock service worth.