Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
X
xn--ok-0b-74gbuofpaf-7p
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 36
    • Issues 36
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Adrian Niven
  • xn--ok-0b-74gbuofpaf-7p
  • Issues
  • #31

Closed
Open
Opened May 30, 2025 by Adrian Niven@adrianniven08
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, pipewiki.org Gym is an open-source Python library developed to help with the development of reinforcement learning algorithms. It aimed to standardize how environments are defined in AI research study, making published research study more easily reproducible [24] [144] while offering users with an easy interface for communicating with these environments. In 2022, new advancements of Gym have been transferred to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for reinforcement learning (RL) research study on video games [147] using RL algorithms and study generalization. Prior RL research study focused mainly on enhancing representatives to solve single tasks. Gym Retro offers the capability to generalize between games with similar concepts but different looks.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic representatives at first lack understanding of how to even stroll, however are offered the objectives of discovering to move and to push the opposing representative out of the ring. [148] Through this adversarial knowing procedure, the representatives find out how to adapt to changing conditions. When an agent is then eliminated from this virtual environment and put in a brand-new virtual environment with high winds, the agent braces to remain upright, suggesting it had actually discovered how to stabilize in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competition between representatives could create an intelligence "arms race" that might increase an agent's capability to work even outside the context of the competitors. [148]
OpenAI 5

OpenAI Five is a team of five OpenAI-curated bots utilized in the competitive five-on-five computer game Dota 2, that discover to play against human players at a high skill level entirely through trial-and-error algorithms. Before becoming a team of 5, the very first public demonstration happened at The International 2017, the annual premiere championship competition for the video game, where Dendi, an expert Ukrainian gamer, lost against a bot in a live individually match. [150] [151] After the match, CTO Greg Brockman explained that the bot had found out by playing against itself for 2 weeks of genuine time, and that the knowing software application was an action in the instructions of producing software that can handle complex tasks like a cosmetic surgeon. [152] [153] The system utilizes a kind of reinforcement knowing, as the bots find out with time by playing against themselves numerous times a day for months, and are rewarded for actions such as eliminating an enemy and taking map goals. [154] [155] [156]
By June 2018, the ability of the bots broadened to play together as a complete team of 5, and they had the ability to defeat teams of amateur and semi-professional players. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibition matches against professional gamers, it-viking.ch but ended up losing both games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the ruling world champions of the game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' final public look came later on that month, where they played in 42,729 total games in a four-day open online competition, winning 99.4% of those games. [165]
OpenAI 5's systems in Dota 2's bot gamer shows the challenges of AI systems in multiplayer online fight arena (MOBA) games and how OpenAI Five has shown making use of deep reinforcement learning (DRL) agents to attain superhuman competence in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses maker learning to train a Shadow Hand, a human-like robotic hand, to manipulate physical items. [167] It finds out entirely in simulation utilizing the exact same RL algorithms and training code as OpenAI Five. OpenAI dealt with the object orientation problem by using domain randomization, a simulation method which exposes the student to a range of experiences instead of attempting to fit to truth. The set-up for Dactyl, aside from having movement tracking electronic cameras, likewise has RGB video cameras to permit the robotic to manipulate an approximate item by seeing it. In 2018, OpenAI showed that the system was able to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl could fix a Rubik's Cube. The robot had the ability to resolve the puzzle 60% of the time. Objects like the Rubik's Cube introduce complicated physics that is harder to design. OpenAI did this by improving the effectiveness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation technique of producing progressively harder environments. ADR differs from manual domain randomization by not needing a human to define randomization varieties. [169]
API

In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing new AI models developed by OpenAI" to let designers contact it for "any English language AI task". [170] [171]
Text generation

The company has actually popularized generative pretrained transformers (GPT). [172]
OpenAI's original GPT design ("GPT-1")

The initial paper on generative pre-training of a transformer-based language design was written by Alec Radford and his associates, and published in preprint on OpenAI's site on June 11, 2018. [173] It showed how a generative design of language might obtain world understanding and procedure long-range dependencies by pre-training on a diverse corpus with long stretches of contiguous text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is an unsupervised transformer language design and the follower to OpenAI's original GPT design ("GPT-1"). GPT-2 was announced in February 2019, with just restricted demonstrative versions initially launched to the public. The complete version of GPT-2 was not immediately released due to concern about possible abuse, including applications for writing fake news. [174] Some specialists revealed uncertainty that GPT-2 postured a significant danger.

In reaction to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to find "neural phony news". [175] Other scientists, such as Jeremy Howard, warned of "the technology to completely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would muffle all other speech and be difficult to filter". [176] In November 2019, OpenAI launched the total variation of the GPT-2 language design. [177] Several websites host interactive demonstrations of different instances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue without supervision language models to be general-purpose learners, highlighted by GPT-2 attaining advanced accuracy and perplexity on 7 of 8 zero-shot jobs (i.e. the design was not further trained on any task-specific input-output examples).

The corpus it was trained on, setiathome.berkeley.edu called WebText, contains a little 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It avoids certain issues encoding vocabulary with word tokens by utilizing byte pair encoding. This allows representing any string of characters by encoding both specific characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is an unsupervised transformer language model and the successor to GPT-2. [182] [183] [184] OpenAI mentioned that the full version of GPT-3 contained 175 billion criteria, [184] two orders of magnitude larger than the 1.5 billion [185] in the full variation of GPT-2 (although GPT-3 models with as few as 125 million criteria were also trained). [186]
OpenAI stated that GPT-3 succeeded at certain "meta-learning" jobs and might generalize the purpose of a single input-output pair. The GPT-3 release paper gave examples of translation and cross-linguistic transfer learning between English and Romanian, and between English and German. [184]
GPT-3 significantly improved benchmark outcomes over GPT-2. OpenAI cautioned that such scaling-up of language designs could be approaching or experiencing the basic capability constraints of predictive language models. [187] Pre-training GPT-3 needed several thousand petaflop/s-days [b] of compute, compared to tens of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained model was not right away released to the public for concerns of possible abuse, although OpenAI planned to permit gain access to through a paid cloud API after a two-month free personal beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified specifically to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has actually additionally been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was launched in private beta. [194] According to OpenAI, the model can develop working code in over a lots shows languages, the majority of successfully in Python. [192]
Several problems with glitches, style defects and security vulnerabilities were cited. [195] [196]
GitHub Copilot has actually been accused of releasing copyrighted code, without any author attribution or license. [197]
OpenAI revealed that they would stop support for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They revealed that the upgraded technology passed a simulated law school bar exam with a score around the top 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could likewise read, analyze or create as much as 25,000 words of text, and write code in all major programs languages. [200]
Observers reported that the iteration of ChatGPT utilizing GPT-4 was an enhancement on the previous GPT-3.5-based model, with the caution that GPT-4 retained some of the problems with earlier revisions. [201] GPT-4 is likewise efficient in taking images as input on ChatGPT. [202] OpenAI has actually declined to reveal numerous technical details and statistics about GPT-4, such as the precise size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI announced and released GPT-4o, which can process and produce text, images and audio. [204] GPT-4o attained state-of-the-art lead to voice, multilingual, and vision standards, setting brand-new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) benchmark compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI released GPT-4o mini, a smaller variation of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be especially useful for enterprises, startups and designers seeking to automate services with AI agents. [208]
o1

On September 12, 2024, OpenAI released the o1-preview and o1-mini models, which have actually been created to take more time to think about their responses, leading to greater precision. These models are particularly effective in science, coding, and thinking jobs, and were made available to ChatGPT Plus and Team members. [209] [210] In December 2024, pediascape.science o1-preview was changed by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the successor of the o1 thinking model. OpenAI also revealed o3-mini, a lighter and quicker variation of OpenAI o3. Since December 21, 2024, this model is not available for public usage. According to OpenAI, they are testing o3 and o3-mini. [212] [213] Until January 10, 2025, safety and security researchers had the opportunity to obtain early access to these designs. [214] The model is called o3 instead of o2 to prevent confusion with telecommunications services service provider O2. [215]
Deep research study

Deep research study is an agent developed by OpenAI, revealed on February 2, 2025. It leverages the abilities of OpenAI's o3 model to perform comprehensive web surfing, information analysis, and synthesis, delivering detailed reports within a timeframe of 5 to thirty minutes. [216] With browsing and Python tools enabled, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) standard. [120]
Image category

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to analyze the semantic resemblance in between text and images. It can notably be used for image category. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer model that creates images from textual descriptions. [218] DALL-E uses a 12-billion-parameter version of GPT-3 to analyze natural language inputs (such as "a green leather bag shaped like a pentagon" or "an isometric view of an unfortunate capybara") and generate matching images. It can develop images of sensible items ("a stained-glass window with an image of a blue strawberry") as well as objects that do not exist in truth ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI announced DALL-E 2, an upgraded version of the design with more sensible results. [219] In December 2022, OpenAI released on GitHub software application for Point-E, a new simple system for transforming a text description into a 3-dimensional design. [220]
DALL-E 3

In September 2023, OpenAI announced DALL-E 3, a more effective design much better able to generate images from complicated descriptions without manual prompt engineering and render complex details like hands and text. [221] It was released to the public as a ChatGPT Plus function in October. [222]
Text-to-video

Sora

Sora is a text-to-video model that can generate videos based upon short detailed triggers [223] as well as extend existing videos forwards or backwards in time. [224] It can produce videos with resolution up to 1920x1080 or 1080x1920. The maximal length of produced videos is unknown.

Sora's advancement team named it after the Japanese word for "sky", to represent its "limitless creative capacity". [223] Sora's technology is an adaptation of the technology behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system utilizing publicly-available videos as well as copyrighted videos for that purpose, but did not reveal the number or the specific sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the public on February 15, 2024, specifying that it might create videos as much as one minute long. It also shared a technical report highlighting the methods utilized to train the design, and the design's capabilities. [225] It acknowledged some of its shortcomings, including struggles imitating complex physics. [226] Will Douglas Heaven of the MIT Technology Review called the demonstration videos "outstanding", but noted that they need to have been cherry-picked and might not represent Sora's normal output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demonstration, significant entertainment-industry figures have shown significant interest in the innovation's potential. In an interview, actor/filmmaker Tyler Perry revealed his astonishment at the innovation's ability to produce reasonable video from text descriptions, citing its potential to revolutionize storytelling and material production. He said that his excitement about Sora's possibilities was so strong that he had decided to pause prepare for expanding his Atlanta-based movie studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech acknowledgment design. [228] It is trained on a big dataset of diverse audio and is likewise a multi-task model that can perform multilingual speech acknowledgment along with speech translation and language recognition. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can produce songs with 10 instruments in 15 designs. According to The Verge, a tune produced by MuseNet tends to start fairly but then fall under mayhem the longer it plays. [230] [231] In pop culture, preliminary applications of this tool were utilized as early as 2020 for the internet psychological thriller Ben Drowned to produce music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to create music with vocals. After training on 1.2 million samples, the system accepts a genre, artist, and a bit of lyrics and outputs tune samples. OpenAI mentioned the tunes "reveal local musical coherence [and] follow conventional chord patterns" but acknowledged that the songs lack "familiar bigger musical structures such as choruses that repeat" and that "there is a considerable gap" between Jukebox and human-generated music. The Verge specified "It's technologically outstanding, even if the results seem like mushy variations of tunes that might feel familiar", while Business Insider specified "surprisingly, some of the resulting tunes are catchy and sound genuine". [234] [235] [236]
User interfaces

Debate Game

In 2018, OpenAI released the Debate Game, which teaches makers to debate toy issues in front of a human judge. The function is to research study whether such a technique might assist in auditing AI choices and in developing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every substantial layer and neuron of eight neural network designs which are typically studied in interpretability. [240] Microscope was developed to evaluate the features that form inside these neural networks quickly. The models consisted of are AlexNet, VGG-19, different variations of Inception, and different variations of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an artificial intelligence tool constructed on top of GPT-3 that offers a conversational interface that permits users to ask questions in natural language. The system then responds with an answer within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: adrianniven08/xn--ok-0b-74gbuofpaf-7p#31