DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled versions ranging from 1.5 to 70 billion parameters to build, experiment, and properly scale your generative AI concepts on AWS.
In this post, we show how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled variations of the models also.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that uses reinforcement discovering to improve thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. An essential distinguishing function is its support knowing (RL) action, which was used to refine the model's actions beyond the basic pre-training and fine-tuning process. By incorporating RL, DeepSeek-R1 can adapt better to user feedback and objectives, eventually enhancing both significance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) approach, suggesting it's equipped to break down complex questions and factor through them in a detailed manner. This guided thinking procedure permits the design to produce more accurate, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT abilities, aiming to create structured responses while focusing on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has actually caught the industry's attention as a flexible text-generation design that can be integrated into various workflows such as agents, logical thinking and data analysis jobs.
DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion specifications, enabling effective reasoning by routing queries to the most relevant specialist "clusters." This approach permits the design to focus on different issue domains while maintaining total performance. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge instance to deploy the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 design to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more effective models to imitate the habits and reasoning patterns of the bigger DeepSeek-R1 design, using it as an instructor model.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this model with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous content, and evaluate models against essential security requirements. At the time of writing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce multiple guardrails tailored to various usage cases and apply them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls throughout your generative AI applications.
Prerequisites
To release the DeepSeek-R1 design, you require access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limit increase, develop a limit increase demand and reach out to your account group.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For directions, see Set up consents to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to present safeguards, avoid hazardous content, and evaluate designs against crucial security requirements. You can carry out precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to examine user inputs and model responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The basic flow includes the following actions: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After receiving the model's output, another guardrail check is used. If the output passes this final check, it's returned as the final result. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following areas show inference using this API.
Deploy DeepSeek-R1 in Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:
1. On the Amazon Bedrock console, select Model brochure under Foundation designs in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and pick the DeepSeek-R1 model.
The design detail page supplies vital details about the model's capabilities, rates structure, and execution standards. You can find detailed use directions, including sample API calls and code snippets for integration. The model supports different text generation tasks, including content production, code generation, and concern answering, using its support discovering optimization and CoT thinking capabilities.
The page likewise includes release alternatives and licensing details to help you get started with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, pick Deploy.
You will be prompted to set up the deployment details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, garagesale.es get in an endpoint name (in between 1-50 alphanumeric characters).
5. For Variety of circumstances, enter a number of instances (in between 1-100).
6. For Instance type, select your instance type. For ideal performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised.
Optionally, you can configure advanced security and wiki.whenparked.com facilities settings, including virtual private cloud (VPC) networking, service function authorizations, and file encryption settings. For most utilize cases, the default settings will work well. However, for production implementations, you may wish to review these settings to line up with your company's security and compliance requirements.
7. Choose Deploy to start using the design.
When the deployment is complete, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play area.
8. Choose Open in play ground to access an interactive user interface where you can explore different prompts and change model parameters like temperature level and maximum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal outcomes. For example, material for reasoning.
This is an excellent way to check out the design's thinking and text generation abilities before incorporating it into your applications. The play area offers instant feedback, assisting you comprehend how the design responds to various inputs and letting you fine-tune your triggers for ideal outcomes.
You can rapidly test the design in the playground through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run inference using guardrails with the released DeepSeek-R1 endpoint
The following code example demonstrates how to carry out inference utilizing a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually produced the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime client, configures inference criteria, and sends out a demand to create text based upon a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML solutions that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and deploy them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart uses 2 practical techniques: using the user-friendly SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both techniques to assist you select the method that finest fits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to develop a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The model web browser shows available models, with details like the provider name and model capabilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card.
Each model card shows key details, including:
- Model name
- Provider name
- Task classification (for example, Text Generation).
Bedrock Ready badge (if relevant), showing that this design can be registered with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to invoke the model
5. Choose the model card to see the model details page.
The model details page consists of the following details:
- The design name and company details. Deploy button to deploy the design. About and Notebooks tabs with detailed details
The About tab consists of essential details, such as:
- Model description. - License details.
- Technical requirements.
- Usage standards
Before you release the model, it's advised to evaluate the design details and license terms to validate compatibility with your use case.
6. Choose Deploy to continue with release.
7. For Endpoint name, use the immediately produced name or develop a custom-made one.
- For Instance type ¸ pick an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, go into the variety of circumstances (default: 1). Selecting proper circumstances types and counts is crucial for cost and performance optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time inference is chosen by default. This is enhanced for sustained traffic and low latency.
- Review all configurations for precision. For this design, we strongly suggest sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
- Choose Deploy to deploy the design.
The implementation procedure can take several minutes to complete.
When implementation is complete, your endpoint status will change to InService. At this moment, the model is ready to accept reasoning demands through the endpoint. You can keep an eye on the implementation progress on the SageMaker console Endpoints page, which will show appropriate metrics and pipewiki.org status details. When the implementation is complete, you can conjure up the design utilizing a SageMaker runtime customer and integrate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the needed AWS permissions and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for yewiki.org reasoning programmatically. The code for releasing the design is provided in the Github here. You can clone the note pad and range from SageMaker Studio.
You can run extra demands against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:
Clean up
To prevent unwanted charges, complete the steps in this section to clean up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you deployed the design using Amazon Bedrock Marketplace, complete the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace implementations. - In the Managed deployments area, find the endpoint you want to delete.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're erasing the appropriate implementation: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business construct ingenious services utilizing AWS services and sped up calculate. Currently, he is concentrated on developing strategies for fine-tuning and enhancing the inference performance of big language designs. In his leisure time, Vivek takes pleasure in hiking, viewing motion pictures, and attempting various cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Professional Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads item, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about building options that assist customers accelerate their AI journey and unlock business value.