Artificial General Intelligence
Artificial basic intelligence (AGI) is a kind of expert system (AI) that matches or exceeds human cognitive abilities across a large range of cognitive tasks. This contrasts with narrow AI, which is restricted to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably surpasses human cognitive abilities. AGI is considered one of the meanings of strong AI.
Creating AGI is a primary goal of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 study identified 72 active AGI research and development projects throughout 37 nations. [4]
The timeline for accomplishing AGI stays a topic of ongoing dispute among researchers and specialists. Since 2023, some argue that it may be possible in years or years; others keep it may take a century or longer; a minority believe it might never be attained; and another minority declares that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has actually revealed issues about the quick progress towards AGI, suggesting it could be accomplished earlier than many anticipate. [7]
There is debate on the exact meaning of AGI and relating to whether contemporary large language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common topic in sci-fi and futures studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many experts on AI have stated that alleviating the risk of human termination presented by AGI should be a worldwide top priority. [14] [15] Others find the advancement of AGI to be too remote to present such a risk. [16] [17]
Terminology
AGI is also referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or general smart action. [21]
Some scholastic sources reserve the term "strong AI" for computer programs that experience life or awareness. [a] On the other hand, weak AI (or narrow AI) has the ability to solve one specific problem however lacks general cognitive abilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as people. [a]
Related concepts consist of artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical kind of AGI that is much more usually smart than people, [23] while the concept of transformative AI relates to AI having a big influence on society, for example, similar to the farming or industrial transformation. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They define five levels of AGI: emerging, competent, specialist, virtuoso, and superhuman. For example, a proficient AGI is specified as an AI that exceeds 50% of proficient grownups in a vast array of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly specified however with a limit of 100%. They think about big language models like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have actually been proposed. One of the leading proposals is the Turing test. However, there are other well-known meanings, and some scientists disagree with the more popular approaches. [b]
Intelligence characteristics
Researchers normally hold that intelligence is required to do all of the following: [27]
reason, usage method, resolve puzzles, and make judgments under unpredictability
represent understanding, consisting of common sense knowledge
plan
find out
- communicate in natural language
- if essential, incorporate these skills in conclusion of any given goal
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) consider additional traits such as imagination (the capability to form novel mental images and concepts) [28] and autonomy. [29]
Computer-based systems that show a number of these abilities exist (e.g. see computational imagination, automated reasoning, decision support system, robotic, evolutionary calculation, intelligent representative). There is argument about whether modern AI systems have them to a sufficient degree.
Physical traits
Other capabilities are thought about preferable in smart systems, as they may affect intelligence or help in its expression. These include: [30]
- the capability to sense (e.g. see, hear, and so on), and - the capability to act (e.g. move and manipulate objects, change place to explore, and so on).
This includes the ability to spot and respond to risk. [31]
Although the ability to sense (e.g. see, hear, and so on) and the capability to act (e.g. move and control items, change place to explore, and so on) can be preferable for some smart systems, [30] these physical abilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that big language designs (LLMs) might already be or end up being AGI. Even from a less optimistic viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system suffices, provided it can process input (language) from the external world in place of human senses. This interpretation lines up with the understanding that AGI has never ever been proscribed a particular physical embodiment and therefore does not demand a capacity for locomotion or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests indicated to verify human-level AGI have been considered, consisting of: [33] [34]
The concept of the test is that the machine has to try and pretend to be a man, by answering questions put to it, and it will only pass if the pretence is reasonably persuading. A considerable part of a jury, who should not be professional about makers, must be taken in by the pretence. [37]
AI-complete issues
An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to resolve it, one would need to implement AGI, because the service is beyond the capabilities of a purpose-specific algorithm. [47]
There are lots of problems that have actually been conjectured to require general intelligence to fix along with people. Examples include computer vision, natural language understanding, and dealing with unanticipated situations while solving any real-world problem. [48] Even a specific job like translation requires a device to read and write in both languages, follow the author's argument (reason), understand the context (knowledge), and faithfully replicate the author's initial intent (social intelligence). All of these problems require to be resolved all at once in order to reach human-level machine efficiency.
However, a lot of these jobs can now be carried out by modern-day big language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on numerous benchmarks for checking out understanding and visual reasoning. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The first generation of AI scientists were encouraged that synthetic basic intelligence was possible which it would exist in just a couple of years. [51] AI pioneer Herbert A. Simon wrote in 1965: "devices will be capable, within twenty years, of doing any work a guy can do." [52]
Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they might develop by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the project of making HAL 9000 as reasonable as possible according to the agreement forecasts of the time. He said in 1967, "Within a generation ... the problem of producing 'synthetic intelligence' will substantially be resolved". [54]
Several classical AI jobs, such as Doug Lenat's Cyc job (that began in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, opentx.cz it became apparent that researchers had grossly underestimated the trouble of the job. Funding firms became skeptical of AGI and put scientists under increasing pressure to produce beneficial "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI objectives like "bring on a table talk". [58] In response to this and visualchemy.gallery the success of expert systems, both industry and government pumped money into the field. [56] [59] However, confidence in AI stunningly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever satisfied. [60] For the second time in twenty years, AI researchers who anticipated the imminent accomplishment of AGI had actually been misinterpreted. By the 1990s, AI scientists had a track record for making vain promises. They became reluctant to make predictions at all [d] and prevented mention of "human level" expert system for fear of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI achieved business success and academic respectability by concentrating on specific sub-problems where AI can produce proven results and commercial applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now used thoroughly throughout the innovation industry, and research study in this vein is greatly moneyed in both academia and industry. As of 2018 [update], advancement in this field was thought about an emerging pattern, and a fully grown phase was expected to be reached in more than ten years. [64]
At the turn of the century, numerous traditional AI scientists [65] hoped that strong AI could be developed by integrating programs that fix numerous sub-problems. Hans Moravec wrote in 1988:
I am positive that this bottom-up path to artificial intelligence will one day meet the standard top-down path more than half method, ready to offer the real-world skills and the commonsense understanding that has actually been so frustratingly evasive in reasoning programs. Fully intelligent devices will result when the metaphorical golden spike is driven unifying the 2 efforts. [65]
However, even at the time, this was contested. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by mentioning:
The expectation has actually often been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper are legitimate, then this expectation is hopelessly modular and there is really just one viable path from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we must even attempt to reach such a level, considering that it appears getting there would simply total up to uprooting our symbols from their intrinsic meanings (consequently simply lowering ourselves to the functional equivalent of a programmable computer system). [66]
Modern synthetic basic intelligence research
The term "artificial general intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the ramifications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the capability to please goals in a vast array of environments". [68] This kind of AGI, identified by the ability to increase a mathematical meaning of intelligence rather than exhibit human-like behaviour, [69] was likewise called universal artificial intelligence. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The very first summer season school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was provided in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and featuring a variety of visitor lecturers.
Since 2023 [upgrade], a small number of computer system researchers are active in AGI research, and lots of contribute to a series of AGI conferences. However, progressively more scientists have an interest in open-ended knowing, [76] [77] which is the idea of allowing AI to continually find out and innovate like humans do.
Feasibility
Since 2023, the development and potential achievement of AGI stays a subject of intense dispute within the AI community. While conventional consensus held that AGI was a distant goal, recent improvements have led some scientists and industry figures to declare that early types of AGI may currently exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "machines will be capable, within twenty years, of doing any work a guy can do". This forecast stopped working to come real. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century because it would need "unforeseeable and essentially unforeseeable breakthroughs" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between modern-day computing and human-level artificial intelligence is as wide as the gulf between present area flight and practical faster-than-light spaceflight. [80]
A further challenge is the lack of clarity in specifying what intelligence requires. Does it require awareness? Must it display the ability to set goals as well as pursue them? Is it purely a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are centers such as planning, thinking, and causal understanding required? Does intelligence need explicitly replicating the brain and its particular faculties? Does it need feelings? [81]
Most AI scientists believe strong AI can be achieved in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, but that the present level of development is such that a date can not accurately be predicted. [84] AI professionals' views on the expediency of AGI wax and wane. Four polls carried out in 2012 and 2013 suggested that the typical price quote among experts for when they would be 50% confident AGI would arrive was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the specialists, 16.5% addressed with "never ever" when asked the exact same concern but with a 90% self-confidence rather. [85] [86] Further present AGI progress factors to consider can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong predisposition towards anticipating the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They evaluated 95 forecasts made in between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft scientists released a detailed evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we believe that it could fairly be considered as an early (yet still insufficient) version of a synthetic general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outperforms 99% of human beings on the Torrance tests of creative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a significant level of basic intelligence has actually currently been achieved with frontier designs. They composed that reluctance to this view originates from four primary reasons: a "healthy suspicion about metrics for AGI", an "ideological commitment to alternative AI theories or techniques", a "dedication to human (or biological) exceptionalism", or a "issue about the financial implications of AGI". [91]
2023 also marked the development of big multimodal models (big language designs efficient in processing or generating numerous methods such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of designs that "invest more time believing before they react". According to Mira Murati, this capability to think before responding represents a brand-new, extra paradigm. It enhances model outputs by spending more computing power when generating the answer, whereas the model scaling paradigm improves outputs by increasing the model size, training data and training compute power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the company had actually accomplished AGI, mentioning, "In my viewpoint, we have actually already accomplished AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any task", it is "better than a lot of human beings at many tasks." He likewise attended to criticisms that large language designs (LLMs) merely follow predefined patterns, comparing their knowing procedure to the scientific method of observing, assuming, and verifying. These declarations have triggered argument, as they count on a broad and unconventional definition of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models demonstrate impressive versatility, they may not totally meet this requirement. Notably, Kazemi's comments came soon after OpenAI eliminated "AGI" from the terms of its partnership with Microsoft, triggering speculation about the business's tactical intentions. [95]
Timescales
Progress in synthetic intelligence has actually historically gone through durations of quick development separated by durations when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software application or both to produce space for more progress. [82] [98] [99] For example, the computer hardware offered in the twentieth century was not sufficient to implement deep knowing, which needs great deals of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel says that price quotes of the time needed before a genuinely versatile AGI is constructed vary from 10 years to over a century. Since 2007 [upgrade], the consensus in the AGI research study community appeared to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI scientists have given a wide variety of viewpoints on whether progress will be this quick. A 2012 meta-analysis of 95 such opinions discovered a bias towards forecasting that the onset of AGI would take place within 16-26 years for contemporary and historic predictions alike. That paper has actually been slammed for how it classified viewpoints as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, significantly better than the second-best entry's rate of 26.3% (the conventional technique used a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was considered the preliminary ground-breaker of the current deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly available and easily available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds around to a six-year-old kid in very first grade. A grownup concerns about 100 on average. Similar tests were carried out in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model capable of carrying out lots of diverse jobs without specific training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]
In the exact same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI asked for modifications to the chatbot to comply with their safety guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in performing more than 600 different jobs. [110]
In 2023, Microsoft Research published a study on an early version of OpenAI's GPT-4, competing that it displayed more basic intelligence than previous AI models and showed human-level performance in jobs spanning numerous domains, such as mathematics, coding, and law. This research stimulated a dispute on whether GPT-4 could be thought about an early, incomplete version of synthetic basic intelligence, emphasizing the need for additional expedition and evaluation of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton mentioned that: [112]
The idea that this stuff could in fact get smarter than individuals - a couple of people believed that, [...] But the majority of people thought it was way off. And I thought it was way off. I believed it was 30 to 50 years or perhaps longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis likewise said that "The development in the last couple of years has been quite incredible", and that he sees no factor why it would slow down, expecting AGI within a years or perhaps a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would be capable of passing any test at least along with people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI staff member, approximated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation
While the development of transformer models like in ChatGPT is considered the most appealing course to AGI, [116] [117] entire brain emulation can serve as an alternative technique. With whole brain simulation, a brain model is developed by scanning and mapping a biological brain in detail, and after that copying and simulating it on a computer system or another computational device. The simulation design need to be adequately loyal to the original, so that it behaves in almost the very same way as the original brain. [118] Whole brain emulation is a type of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research study functions. It has been talked about in artificial intelligence research [103] as a method to strong AI. Neuroimaging innovations that might provide the needed detailed understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of adequate quality will appear on a comparable timescale to the computing power needed to replicate it.
Early approximates
For low-level brain simulation, a very effective cluster of computer systems or GPUs would be needed, provided the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by their adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based on a simple switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at various quotes for the hardware required to equal the human brain and embraced a figure of 1016 calculations per second (cps). [e] (For comparison, if a "calculation" was comparable to one "floating-point operation" - a procedure utilized to rate present supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, attained in 2011, while 1018 was achieved in 2022.) He used this figure to anticipate the necessary hardware would be readily available at some point in between 2015 and 2025, if the exponential growth in computer power at the time of writing continued.
Current research study
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually developed an especially comprehensive and publicly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The synthetic nerve cell model presumed by Kurzweil and used in numerous current artificial neural network implementations is easy compared with biological nerve cells. A brain simulation would likely need to capture the comprehensive cellular behaviour of biological neurons, presently understood only in broad summary. The overhead introduced by full modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would need computational powers a number of orders of magnitude larger than Kurzweil's estimate. In addition, the quotes do not represent glial cells, which are known to play a role in cognitive procedures. [125]
A basic criticism of the simulated brain method originates from embodied cognition theory which asserts that human embodiment is an important element of human intelligence and is needed to ground significance. [126] [127] If this theory is proper, any totally functional brain model will require to encompass more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an alternative, however it is unidentified whether this would be adequate.
Philosophical perspective
"Strong AI" as defined in approach
In 1980, theorist John Searle created the term "strong AI" as part of his Chinese room argument. [128] He proposed a distinction in between two hypotheses about expert system: [f]
Strong AI hypothesis: A synthetic intelligence system can have "a mind" and "consciousness". Weak AI hypothesis: An artificial intelligence system can (only) act like it thinks and has a mind and consciousness.
The first one he called "strong" because it makes a more powerful statement: it assumes something special has taken place to the device that surpasses those capabilities that we can test. The behaviour of a "weak AI" device would be exactly identical to a "strong AI" device, however the latter would also have subjective mindful experience. This usage is likewise typical in academic AI research and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to imply "human level synthetic general intelligence". [102] This is not the very same as Searle's strong AI, unless it is assumed that consciousness is required for human-level AGI. Academic thinkers such as Searle do not believe that holds true, and to most expert system scientists the question is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to understand if it actually has mind - undoubtedly, there would be no other way to tell. For AI research study, Searle's "weak AI hypothesis" is equivalent to the statement "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have different significances, and some aspects play considerable roles in sci-fi and the ethics of artificial intelligence:
Sentience (or "extraordinary awareness"): The capability to "feel" understandings or feelings subjectively, instead of the ability to reason about perceptions. Some thinkers, such as David Chalmers, use the term "awareness" to refer exclusively to remarkable consciousness, which is roughly comparable to sentience. [132] Determining why and how subjective experience develops is called the hard problem of awareness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be conscious. If we are not conscious, then it does not feel like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had achieved sentience, though this claim was commonly disputed by other experts. [135]
Self-awareness: To have conscious awareness of oneself as a separate person, specifically to be knowingly familiar with one's own thoughts. This is opposed to simply being the "subject of one's believed"-an os or debugger has the ability to be "mindful of itself" (that is, to represent itself in the same way it represents everything else)-but this is not what individuals usually indicate when they utilize the term "self-awareness". [g]
These qualities have an ethical dimension. AI sentience would trigger concerns of well-being and legal security, likewise to animals. [136] Other elements of awareness associated to cognitive abilities are likewise relevant to the concept of AI rights. [137] Finding out how to integrate advanced AI with existing legal and social structures is an emerging problem. [138]
Benefits
AGI could have a wide range of applications. If oriented towards such goals, AGI might help reduce different problems worldwide such as cravings, poverty and health issues. [139]
AGI could improve efficiency and efficiency in a lot of tasks. For example, in public health, AGI could speed up medical research study, notably versus cancer. [140] It might look after the senior, [141] and democratize access to quick, high-quality medical diagnostics. It could use enjoyable, inexpensive and individualized education. [141] The need to work to subsist might become obsolete if the wealth produced is properly rearranged. [141] [142] This also raises the concern of the location of human beings in a drastically automated society.
AGI might also help to make reasonable decisions, and to anticipate and avoid disasters. It might likewise help to profit of potentially devastating innovations such as nanotechnology or environment engineering, while preventing the associated threats. [143] If an AGI's primary objective is to avoid existential disasters such as human termination (which could be challenging if the Vulnerable World Hypothesis turns out to be real), [144] it could take procedures to significantly reduce the dangers [143] while decreasing the impact of these steps on our lifestyle.
Risks
Existential dangers
AGI might represent several kinds of existential danger, which are risks that threaten "the premature termination of Earth-originating smart life or the irreversible and drastic damage of its potential for desirable future development". [145] The risk of human extinction from AGI has been the topic of many disputes, but there is likewise the possibility that the advancement of AGI would lead to a completely flawed future. Notably, it might be utilized to spread and preserve the set of worths of whoever develops it. If mankind still has ethical blind areas comparable to slavery in the past, AGI might irreversibly entrench it, avoiding moral development. [146] Furthermore, AGI might help with mass surveillance and indoctrination, which could be used to develop a steady repressive worldwide totalitarian routine. [147] [148] There is also a risk for the machines themselves. If makers that are sentient or otherwise worthy of moral factor to consider are mass created in the future, participating in a civilizational course that forever disregards their well-being and interests could be an existential catastrophe. [149] [150] Considering how much AGI could improve humanity's future and help in reducing other existential risks, Toby Ord calls these existential risks "an argument for continuing with due care", not for "abandoning AI". [147]
Risk of loss of control and human termination
The thesis that AI positions an existential danger for humans, which this risk needs more attention, is controversial however has actually been backed in 2023 by lots of public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed widespread indifference:
So, facing possible futures of incalculable benefits and risks, the specialists are definitely doing whatever possible to guarantee the very best outcome, right? Wrong. If an exceptional alien civilisation sent us a message stating, 'We'll show up in a few years,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is taking place with AI. [153]
The potential fate of mankind has actually often been compared to the fate of gorillas threatened by human activities. The comparison mentions that greater intelligence permitted mankind to dominate gorillas, which are now susceptible in ways that they could not have actually prepared for. As a result, the gorilla has actually ended up being an endangered types, not out of malice, but just as a collateral damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to control humanity which we ought to be mindful not to anthropomorphize them and translate their intents as we would for humans. He said that individuals won't be "clever adequate to develop super-intelligent makers, yet ridiculously stupid to the point of giving it moronic objectives with no safeguards". [155] On the other side, the idea of important convergence recommends that nearly whatever their objectives, smart representatives will have factors to try to survive and obtain more power as intermediary steps to attaining these objectives. And that this does not require having feelings. [156]
Many scholars who are worried about existential risk supporter for more research study into solving the "control issue" to answer the concern: what kinds of safeguards, algorithms, or architectures can programmers execute to increase the likelihood that their recursively-improving AI would continue to behave in a friendly, rather than harmful, way after it reaches superintelligence? [157] [158] Solving the control problem is complicated by the AI arms race (which could lead to a race to the bottom of security precautions in order to launch items before competitors), [159] and using AI in weapon systems. [160]
The thesis that AI can present existential danger also has detractors. Skeptics usually state that AGI is unlikely in the short-term, or that concerns about AGI distract from other concerns connected to existing AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for lots of people beyond the innovation market, existing chatbots and LLMs are currently viewed as though they were AGI, leading to additional misconception and fear. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an unreasonable belief in an omnipotent God. [163] Some scientists think that the interaction campaigns on AI existential danger by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulative capture and to inflate interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other industry leaders and scientists, provided a joint statement asserting that "Mitigating the risk of extinction from AI should be an international concern along with other societal-scale threats such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI estimated that "80% of the U.S. workforce might have at least 10% of their work jobs affected by the intro of LLMs, while around 19% of employees may see at least 50% of their jobs affected". [166] [167] They consider workplace workers to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI could have a better autonomy, capability to make choices, to interface with other computer tools, but likewise to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the lifestyle will depend on how the wealth will be rearranged: [142]
Everyone can delight in a life of elegant leisure if the machine-produced wealth is shared, or many people can end up miserably bad if the machine-owners effectively lobby against wealth redistribution. So far, the trend seems to be towards the 2nd alternative, with technology driving ever-increasing inequality
Elon Musk thinks about that the automation of society will require federal governments to adopt a universal fundamental income. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain AI result AI safety - Research location on making AI safe and advantageous AI alignment - AI conformance to the desired goal A.I. Rising - 2018 movie directed by Lazar Bodroža Expert system Automated artificial intelligence - Process of automating the application of machine learning BRAIN Initiative - Collaborative public-private research effort announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General video game playing - Ability of expert system to play various video games Generative expert system - AI system efficient in creating material in reaction to prompts Human Brain Project - Scientific research study job Intelligence amplification - Use of infotech to enhance human intelligence (IA). Machine principles - Moral behaviours of manufactured makers. Moravec's paradox. Multi-task learning - Solving multiple maker discovering jobs at the same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to synthetic intelligence. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or form of synthetic intelligence. Transfer learning - Machine learning strategy. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specially developed and optimized for expert system. Weak expert system - Form of artificial intelligence.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the article Chinese room. ^ AI creator John McCarthy composes: "we can not yet identify in basic what sort of computational procedures we desire to call smart. " [26] (For a discussion of some meanings of intelligence used by synthetic intelligence scientists, see philosophy of artificial intelligence.). ^ The Lighthill report specifically slammed AI's "grand objectives" and led the dismantling of AI research in England. [55] In the U.S., DARPA became identified to money only "mission-oriented direct research, instead of fundamental undirected research". [56] [57] ^ As AI creator John McCarthy writes "it would be an excellent relief to the rest of the employees in AI if the inventors of new basic formalisms would express their hopes in a more secured form than has actually often held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As defined in a standard AI textbook: "The assertion that machines might perhaps act wisely (or, memorial-genweb.org possibly much better, act as if they were smart) is called the 'weak AI' hypothesis by philosophers, and the assertion that makers that do so are in fact believing (rather than mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to carry out a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that synthetic general intelligence benefits all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is developing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were recognized as being active in 2020. ^ a b c "AI timelines: What do specialists in synthetic intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton gives up Google and alerts of danger ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad actors from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals sparks of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The genuine risk is not AI itself however the method we release it. ^ "Impressed by synthetic intelligence? Experts say AGI is following, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might pose existential threats to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last invention that mankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of extinction from AI ought to be a worldwide priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists caution of risk of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from developing machines that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not provide an existential danger". Medium. There is no factor to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the complete series of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is transforming our world - it is on everyone to ensure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent qualities is based upon the subjects covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reconsidered: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reassessed: The concept of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar examination to AP Biology. Here's a list of challenging examinations both AI versions have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested checking an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109. ^ "Scientist on the Set: pipewiki.org An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software application engineers avoided the term artificial intelligence for fear of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite progress in maker intelligence, artificial basic intelligence is still a major difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not turn into a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general synthetic intelligence will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us paradise or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A survey of skilled viewpoint. In Fundamental issues of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, opentx.cz What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as smart as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're entering the AI twilight zone in between narrow and basic AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are currently seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, but the consensus is that it is not AGI. ... If nothing else, GPT-3 tells us there is a happy medium in between narrow and general AI. ^ Quach, Katyanna. "A developer built an AI chatbot utilizing GPT-3 that assisted a man speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can perform over 600 tasks, from playing video games to controlling robots", TechCrunch, archived from the initial on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might equal human intelligence in 'just a couple of years,' states CEO of Google's main A.I. research study lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody appears to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study job maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A large range of views in existing research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer may become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced estimate in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable artificial intelligence for interest by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the business's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense surpass advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, dangers, strategies (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that human beings will ruin ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security danger' to Australia, Senate query says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the ramifications of artificial intelligence - but are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The remarkable Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The fascinating Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI danger: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report cautions". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over risk posed but expert system can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring worries over AI, caution researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator says huge tech is lying about AI extinction threat". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early look at the labor market impact capacity of big language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of workers might see their jobs affected by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we require universal fundamental earnings since 'in the future, manual labor will be an option'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), " and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Expert System. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Viewpoint, archived from the original on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The supreme effort is to make computer system programs that can resolve issues and achieve goals worldwide along with people. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, retrieved 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York: Oxford University Press, archived from the initial on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, obtained 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what may be called "Dyson's Law") that "Any system simple sufficient to be understandable will not be complicated enough to act smartly, while any system made complex enough to behave smartly will be too made complex to understand." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead basic stupid. They work, but they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what distinguishes us from makers. For biological animals, factor and function come from acting in the world and experiencing the consequences. Artificial intelligences - disembodied, strangers to blood, sweat, and tears - have no event for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who wish to get abundant from AI are going to have the interests of the rest of us close at heart,' ... writes [Gary Marcus] 'We can't rely on federal governments driven by project finance contributions [from tech companies] to push back.' ... Marcus details the needs that citizens must make of their federal governments and the tech business. They include openness on how AI systems work; payment for individuals if their information [are] used to train LLMs (big language model) s and the right to grant this use; and the capability to hold tech companies responsible for the damages they cause by getting rid of Section 230, imposing money penalites, and passing more stringent product liability laws ... Marcus likewise recommends ... that a brand-new, AI-specific federal firm, akin to the FDA, the FCC, or the FTC, might provide the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... suggests ... establish [ing] an expert licensing routine for engineers that would work in a comparable method to medical licenses, malpractice fits, and the Hippocratic oath in medication. 'What if, like physicians,' she asks ..., 'AI engineers likewise promised to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has stumped humans for decades, reveals the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competitors has actually revealed that although NLP (natural-language processing) models are capable of unbelievable accomplishments, their abilities are quite limited by the quantity of context they receive. This [...] might trigger [troubles] for researchers who want to use them to do things such as analyze ancient languages. Sometimes, demo.qkseo.in there are few historical records on long-gone civilizations to work as training data for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to produce fake videos indistinguishable from real ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we indicate realistic videos produced using expert system that in fact deceive people, then they barely exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in general, operating in our media as counterfeited evidence. Their role much better looks like that of animations, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to prevent humanizing machine-learning designs used in clinical research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of synthetic general intelligence are stymmied by the same old problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, recovered 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead authorities to ignore contradictory proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test however revealed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that need real humanlike thinking or an understanding of the physical and social world ... ChatGPT appeared unable to reason rationally and attempted to rely on its vast database of ... truths obtained from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are powerful however undependable. Rules-based systems can not deal with circumstances their programmers did not prepare for. Learning systems are limited by the information on which they were trained. AI failures have actually already resulted in catastrophe. Advanced auto-pilot features in cars and trucks, although they perform well in some circumstances, have driven cars without cautioning into trucks, concrete barriers, and parked automobiles. In the incorrect situation, AI systems go from supersmart to superdumb in an instant. When an enemy is attempting to control and hack an AI system, the risks are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by new technologies but depend on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.