Artificial General Intelligence
Artificial general intelligence (AGI) is a type of expert system (AI) that matches or surpasses human cognitive abilities across a large range of cognitive tasks. This contrasts with narrow AI, which is restricted to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that considerably goes beyond human cognitive abilities. AGI is considered one of the definitions of strong AI.
Creating AGI is a primary goal of AI research study and of companies such as OpenAI [2] and lespoetesbizarres.free.fr Meta. [3] A 2020 survey recognized 72 active AGI research and development jobs throughout 37 countries. [4]
The timeline for achieving AGI remains a subject of ongoing argument amongst scientists and experts. As of 2023, some argue that it might be possible in years or decades; others keep it might take a century or longer; a minority think it may never ever be attained; and another minority declares that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has revealed issues about the quick development towards AGI, suggesting it could be achieved sooner than numerous expect. [7]
There is debate on the precise meaning of AGI and concerning whether contemporary large language designs (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a common subject in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many specialists on AI have specified that alleviating the threat of human termination presented by AGI ought to be an international priority. [14] [15] Others discover the development of AGI to be too remote to present such a threat. [16] [17]
Terminology
AGI is likewise referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or mariskamast.net general smart action. [21]
Some academic sources reserve the term "strong AI" for computer system programs that experience sentience or awareness. [a] On the other hand, weak AI (or narrow AI) is able to solve one specific issue however lacks general cognitive abilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the exact same sense as human beings. [a]
Related concepts include artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a theoretical kind of AGI that is far more usually intelligent than human beings, [23] while the notion of transformative AI associates with AI having a large effect on society, for instance, similar to the farming or commercial revolution. [24]
A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify 5 levels of AGI: emerging, competent, professional, virtuoso, and superhuman. For instance, a skilled AGI is specified as an AI that exceeds 50% of knowledgeable grownups in a wide variety of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise defined however with a threshold of 100%. They think about big language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have been proposed. One of the leading proposals is the Turing test. However, there are other well-known meanings, and some scientists disagree with the more popular methods. [b]
Intelligence qualities
Researchers usually hold that intelligence is required to do all of the following: [27]
factor, use strategy, fix puzzles, and make judgments under uncertainty
represent knowledge, including good sense knowledge
strategy
discover
- interact in natural language
- if required, integrate these abilities in completion of any offered goal
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) consider additional qualities such as creativity (the ability to form novel psychological images and ideas) [28] and autonomy. [29]
Computer-based systems that show a lot of these abilities exist (e.g. see computational imagination, automated reasoning, choice support system, robot, evolutionary computation, intelligent agent). There is argument about whether contemporary AI systems possess them to a sufficient degree.
Physical traits
Other capabilities are considered preferable in intelligent systems, as they might affect intelligence or aid in its expression. These include: [30]
- the ability to sense (e.g. see, hear, and so on), and - the ability to act (e.g. move and manipulate items, modification area to explore, etc).
This consists of the ability to discover and respond to danger. [31]
Although the capability to sense (e.g. see, hear, and so on) and the capability to act (e.g. relocation and manipulate items, modification area to check out, and so on) can be desirable for some intelligent systems, [30] these physical capabilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that large language designs (LLMs) may already be or become AGI. Even from a less positive point of view on LLMs, there is no company requirement for an AGI to have a human-like type; being a silicon-based computational system is adequate, provided it can process input (language) from the external world in place of human senses. This analysis lines up with the understanding that AGI has never been proscribed a specific physical embodiment and hence does not require a capacity for locomotion or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to confirm human-level AGI have been considered, consisting of: [33] [34]
The idea of the test is that the machine has to try and pretend to be a male, by addressing concerns put to it, and it will only pass if the pretence is reasonably convincing. A substantial part of a jury, who ought to not be expert about makers, should be taken in by the pretence. [37]
AI-complete problems
A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to fix it, one would need to implement AGI, because the service is beyond the capabilities of a purpose-specific algorithm. [47]
There are numerous issues that have actually been conjectured to require basic intelligence to fix along with humans. Examples consist of computer vision, natural language understanding, and dealing with unanticipated circumstances while fixing any real-world problem. [48] Even a specific job like translation requires a maker to check out and compose in both languages, follow the author's argument (factor), understand the context (knowledge), and faithfully reproduce the author's initial intent (social intelligence). All of these issues require to be solved simultaneously in order to reach human-level maker efficiency.
However, a lot of these jobs can now be carried out by contemporary big language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on numerous criteria for out comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The first generation of AI scientists were encouraged that artificial general intelligence was possible which it would exist in simply a few years. [51] AI leader Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a male can do." [52]
Their forecasts were the inspiration for dokuwiki.stream Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they could create by the year 2001. AI pioneer Marvin Minsky was an expert [53] on the task of making HAL 9000 as realistic as possible according to the agreement predictions of the time. He stated in 1967, "Within a generation ... the problem of developing 'synthetic intelligence' will significantly be resolved". [54]
Several classical AI jobs, such as Doug Lenat's Cyc task (that began in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it ended up being apparent that researchers had grossly undervalued the problem of the job. Funding agencies ended up being hesitant of AGI and put scientists under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI objectives like "continue a table talk". [58] In response to this and the success of professional systems, both market and government pumped cash into the field. [56] [59] However, confidence in AI stunningly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never fulfilled. [60] For the second time in twenty years, AI researchers who anticipated the imminent achievement of AGI had actually been misinterpreted. By the 1990s, AI researchers had a track record for making vain pledges. They became hesitant to make forecasts at all [d] and avoided mention of "human level" synthetic intelligence for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI attained industrial success and scholastic respectability by concentrating on particular sub-problems where AI can produce verifiable outcomes and industrial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now used thoroughly throughout the technology industry, and research study in this vein is greatly funded in both academic community and market. As of 2018 [upgrade], advancement in this field was thought about an emerging pattern, and a mature stage was anticipated to be reached in more than 10 years. [64]
At the millenium, numerous mainstream AI scientists [65] hoped that strong AI could be established by integrating programs that solve numerous sub-problems. Hans Moravec wrote in 1988:
I am confident that this bottom-up route to artificial intelligence will one day meet the conventional top-down route more than half method, ready to provide the real-world skills and the commonsense understanding that has actually been so frustratingly evasive in reasoning programs. Fully intelligent devices will result when the metaphorical golden spike is driven joining the 2 efforts. [65]
However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:
The expectation has actually frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper are legitimate, then this expectation is hopelessly modular and there is truly just one viable route from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer will never ever be reached by this route (or vice versa) - nor is it clear why we ought to even attempt to reach such a level, considering that it looks as if arriving would simply total up to uprooting our signs from their intrinsic meanings (thereby merely minimizing ourselves to the functional equivalent of a programmable computer system). [66]
Modern artificial basic intelligence research study
The term "synthetic general intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the implications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the capability to satisfy goals in a large range of environments". [68] This kind of AGI, identified by the capability to maximise a mathematical definition of intelligence instead of display human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The first summer school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and featuring a number of visitor speakers.
Since 2023 [update], a small number of computer system researchers are active in AGI research study, and lots of add to a series of AGI conferences. However, progressively more researchers are interested in open-ended knowing, [76] [77] which is the idea of enabling AI to constantly find out and innovate like humans do.
Feasibility
As of 2023, the advancement and possible accomplishment of AGI stays a topic of intense debate within the AI neighborhood. While conventional agreement held that AGI was a far-off goal, current developments have led some scientists and industry figures to claim that early kinds of AGI may already exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "devices will be capable, within twenty years, of doing any work a guy can do". This prediction stopped working to come true. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century since it would need "unforeseeable and fundamentally unpredictable developments" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between modern-day computing and human-level expert system is as large as the gulf in between present space flight and useful faster-than-light spaceflight. [80]
A more obstacle is the absence of clarity in defining what intelligence requires. Does it require awareness? Must it display the capability to set goals along with pursue them? Is it purely a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are facilities such as planning, reasoning, and causal understanding required? Does intelligence need explicitly replicating the brain and its specific faculties? Does it need feelings? [81]
Most AI researchers think strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of accomplishing strong AI. [82] [83] John McCarthy is among those who believe human-level AI will be accomplished, however that today level of progress is such that a date can not precisely be predicted. [84] AI experts' views on the expediency of AGI wax and subside. Four polls carried out in 2012 and 2013 suggested that the mean price quote among professionals for when they would be 50% confident AGI would get here was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the professionals, 16.5% answered with "never" when asked the same question however with a 90% confidence instead. [85] [86] Further existing AGI development factors to consider can be found above Tests for verifying human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year time frame there is a strong predisposition towards forecasting the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They evaluated 95 forecasts made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers released a comprehensive evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we believe that it could reasonably be deemed an early (yet still insufficient) version of a synthetic basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outperforms 99% of humans on the Torrance tests of creative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a substantial level of general intelligence has actually currently been attained with frontier designs. They wrote that reluctance to this view comes from 4 main factors: a "healthy uncertainty about metrics for AGI", an "ideological dedication to alternative AI theories or techniques", a "devotion to human (or biological) exceptionalism", or a "concern about the financial implications of AGI". [91]
2023 also marked the development of large multimodal models (big language designs capable of processing or creating multiple techniques such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of designs that "invest more time thinking before they react". According to Mira Murati, this capability to believe before reacting represents a brand-new, extra paradigm. It improves design outputs by investing more computing power when producing the answer, whereas the model scaling paradigm enhances outputs by increasing the design size, training information and training calculate power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the company had attained AGI, mentioning, "In my viewpoint, we have actually already achieved AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any task", it is "much better than many people at most jobs." He also attended to criticisms that large language designs (LLMs) merely follow predefined patterns, comparing their knowing process to the clinical technique of observing, assuming, and verifying. These statements have stimulated dispute, as they count on a broad and unconventional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs demonstrate amazing flexibility, they may not totally fulfill this standard. Notably, Kazemi's comments came shortly after OpenAI removed "AGI" from the regards to its collaboration with Microsoft, triggering speculation about the business's tactical intents. [95]
Timescales
Progress in expert system has actually traditionally gone through periods of fast development separated by durations when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software application or both to create area for more progress. [82] [98] [99] For example, the hardware offered in the twentieth century was not enough to execute deep learning, which needs great deals of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel says that estimates of the time required before a really versatile AGI is developed vary from 10 years to over a century. Since 2007 [update], the agreement in the AGI research community appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was possible. [103] Mainstream AI researchers have offered a vast array of viewpoints on whether progress will be this fast. A 2012 meta-analysis of 95 such opinions found a bias towards anticipating that the start of AGI would happen within 16-26 years for modern and historic predictions alike. That paper has actually been criticized for how it classified viewpoints as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, considerably much better than the second-best entry's rate of 26.3% (the standard approach used a weighted sum of scores from various pre-defined classifiers). [105] AlexNet was considered the preliminary ground-breaker of the present deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly readily available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds roughly to a six-year-old child in very first grade. A grownup pertains to about 100 on average. Similar tests were performed in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language model efficient in performing lots of diverse tasks without specific training. According to Gary Grossman in a VentureBeat short article, while there is agreement that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]
In the same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested for changes to the chatbot to abide by their security guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of performing more than 600 different jobs. [110]
In 2023, Microsoft Research released a research study on an early variation of OpenAI's GPT-4, contending that it displayed more general intelligence than previous AI designs and showed human-level efficiency in jobs covering several domains, such as mathematics, coding, and law. This research study triggered a debate on whether GPT-4 could be thought about an early, incomplete version of artificial basic intelligence, stressing the requirement for additional exploration and examination of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton stated that: [112]
The concept that this stuff might in fact get smarter than individuals - a few individuals believed that, [...] But many people thought it was way off. And I thought it was way off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly stated that "The development in the last couple of years has been pretty extraordinary", and that he sees no reason that it would decrease, anticipating AGI within a decade and even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within five years, AI would be capable of passing any test at least as well as human beings. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a former OpenAI worker, estimated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation
While the development of transformer designs like in ChatGPT is thought about the most appealing course to AGI, [116] [117] entire brain emulation can serve as an alternative technique. With whole brain simulation, a brain model is constructed by scanning and mapping a biological brain in detail, and after that copying and imitating it on a computer system or another computational device. The simulation model should be sufficiently loyal to the initial, so that it acts in virtually the very same way as the original brain. [118] Whole brain emulation is a type of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research purposes. It has actually been discussed in artificial intelligence research [103] as a method to strong AI. Neuroimaging technologies that could deliver the required comprehensive understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of sufficient quality will become readily available on a comparable timescale to the computing power required to replicate it.
Early estimates
For low-level brain simulation, an extremely effective cluster of computer systems or GPUs would be required, given the enormous quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by their adult years. Estimates vary for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based upon a simple switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at different price quotes for the hardware needed to equal the human brain and adopted a figure of 1016 computations per 2nd (cps). [e] (For contrast, if a "computation" was equivalent to one "floating-point operation" - a step utilized to rate existing supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, achieved in 2011, while 1018 was accomplished in 2022.) He used this figure to anticipate the necessary hardware would be readily available at some point in between 2015 and 2025, if the exponential growth in computer system power at the time of writing continued.
Current research
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has developed an especially in-depth and publicly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The artificial neuron model assumed by Kurzweil and used in many present synthetic neural network applications is simple compared with biological neurons. A brain simulation would likely need to capture the detailed cellular behaviour of biological neurons, currently understood just in broad summary. The overhead presented by complete modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would require computational powers a number of orders of magnitude larger than Kurzweil's quote. In addition, the price quotes do not account for glial cells, which are known to contribute in cognitive procedures. [125]
An essential criticism of the simulated brain approach derives from embodied cognition theory which asserts that human personification is an essential element of human intelligence and is needed to ground significance. [126] [127] If this theory is proper, any completely practical brain model will require to include more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an option, but it is unknown whether this would suffice.
Philosophical perspective
"Strong AI" as specified in viewpoint
In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference between two hypotheses about synthetic intelligence: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: A synthetic intelligence system can (just) imitate it believes and has a mind and awareness.
The first one he called "strong" since it makes a more powerful declaration: it assumes something unique has occurred to the machine that surpasses those capabilities that we can check. The behaviour of a "weak AI" maker would be specifically identical to a "strong AI" maker, however the latter would likewise have subjective mindful experience. This usage is also common in scholastic AI research and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to indicate "human level synthetic basic intelligence". [102] This is not the same as Searle's strong AI, unless it is assumed that awareness is required for human-level AGI. Academic theorists such as Searle do not believe that holds true, and to most expert system researchers the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to know if it really has mind - indeed, there would be no way to inform. For AI research, Searle's "weak AI hypothesis" is equivalent to the statement "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for granted, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are two different things.
Consciousness
Consciousness can have various significances, and some aspects play substantial roles in science fiction and the ethics of expert system:
Sentience (or "sensational awareness"): The ability to "feel" perceptions or emotions subjectively, as opposed to the capability to reason about understandings. Some philosophers, such as David Chalmers, utilize the term "awareness" to refer specifically to phenomenal awareness, which is roughly equivalent to sentience. [132] Determining why and how subjective experience occurs is called the hard issue of consciousness. [133] Thomas Nagel described in 1974 that it "feels like" something to be conscious. If we are not conscious, then it does not seem like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had actually achieved life, though this claim was commonly contested by other professionals. [135]
Self-awareness: To have conscious awareness of oneself as a separate individual, specifically to be consciously conscious of one's own thoughts. This is opposed to just being the "subject of one's believed"-an os or debugger has the ability to be "knowledgeable about itself" (that is, to represent itself in the very same way it represents everything else)-however this is not what people usually indicate when they utilize the term "self-awareness". [g]
These qualities have a moral dimension. AI life would generate issues of welfare and legal security, similarly to animals. [136] Other aspects of consciousness associated to cognitive capabilities are also appropriate to the idea of AI rights. [137] Figuring out how to incorporate sophisticated AI with existing legal and social structures is an emergent concern. [138]
Benefits
AGI could have a variety of applications. If oriented towards such goals, AGI could assist alleviate different issues worldwide such as cravings, poverty and illness. [139]
AGI could improve efficiency and effectiveness in most jobs. For example, in public health, AGI might accelerate medical research study, especially against cancer. [140] It could take care of the senior, [141] and democratize access to quick, top quality medical diagnostics. It could use fun, cheap and personalized education. [141] The requirement to work to subsist could become outdated if the wealth produced is effectively rearranged. [141] [142] This also raises the concern of the location of people in a drastically automated society.
AGI could likewise assist to make logical decisions, and to expect and prevent catastrophes. It could likewise help to profit of possibly devastating innovations such as nanotechnology or environment engineering, while preventing the associated risks. [143] If an AGI's primary goal is to avoid existential catastrophes such as human extinction (which might be hard if the Vulnerable World Hypothesis ends up being true), [144] it could take steps to considerably minimize the threats [143] while lessening the impact of these measures on our lifestyle.
Risks
Existential threats
AGI may represent multiple kinds of existential risk, which are dangers that threaten "the early termination of Earth-originating intelligent life or the irreversible and extreme destruction of its capacity for preferable future advancement". [145] The danger of human termination from AGI has been the topic of many arguments, but there is likewise the possibility that the development of AGI would result in a permanently problematic future. Notably, it might be used to spread out and preserve the set of worths of whoever establishes it. If mankind still has ethical blind spots comparable to slavery in the past, AGI may irreversibly entrench it, preventing moral development. [146] Furthermore, AGI could facilitate mass security and brainwashing, which might be used to develop a steady repressive around the world totalitarian program. [147] [148] There is also a threat for the machines themselves. If devices that are sentient or otherwise worthwhile of moral factor to consider are mass created in the future, taking part in a civilizational course that indefinitely neglects their welfare and interests could be an existential catastrophe. [149] [150] Considering just how much AGI could enhance humanity's future and help in reducing other existential dangers, Toby Ord calls these existential threats "an argument for continuing with due caution", not for "deserting AI". [147]
Risk of loss of control and human termination
The thesis that AI postures an existential danger for people, which this risk needs more attention, is controversial however has been endorsed in 2023 by numerous public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed prevalent indifference:
So, dealing with possible futures of incalculable advantages and dangers, the specialists are certainly doing everything possible to ensure the best outcome, right? Wrong. If a superior alien civilisation sent us a message saying, 'We'll get here in a couple of decades,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The potential fate of mankind has actually in some cases been compared to the fate of gorillas threatened by human activities. The contrast mentions that greater intelligence enabled mankind to control gorillas, which are now susceptible in ways that they might not have actually prepared for. As an outcome, the gorilla has actually become a threatened types, not out of malice, but just as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate mankind and that we ought to take care not to anthropomorphize them and analyze their intents as we would for human beings. He stated that people won't be "clever adequate to create super-intelligent makers, yet unbelievably dumb to the point of providing it moronic goals with no safeguards". [155] On the other side, the concept of critical convergence suggests that almost whatever their goals, intelligent representatives will have factors to try to endure and obtain more power as intermediary steps to attaining these goals. And that this does not require having feelings. [156]
Many scholars who are concerned about existential risk advocate for more research into resolving the "control issue" to respond to the concern: what types of safeguards, algorithms, or architectures can developers execute to maximise the likelihood that their recursively-improving AI would continue to behave in a friendly, instead of harmful, manner after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which could result in a race to the bottom of security preventative measures in order to launch products before rivals), [159] and using AI in weapon systems. [160]
The thesis that AI can pose existential risk likewise has critics. Skeptics normally state that AGI is unlikely in the short-term, or that concerns about AGI distract from other issues associated with existing AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for many people beyond the technology market, existing chatbots and LLMs are currently viewed as though they were AGI, causing more misunderstanding and worry. [162]
Skeptics often charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an illogical belief in a supreme God. [163] Some researchers believe that the communication projects on AI existential threat by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulative capture and to pump up interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other industry leaders and scientists, provided a joint statement asserting that "Mitigating the risk of extinction from AI should be an international top priority together with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI estimated that "80% of the U.S. labor force might have at least 10% of their work jobs affected by the intro of LLMs, while around 19% of employees may see at least 50% of their tasks affected". [166] [167] They think about workplace employees to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI might have a much better autonomy, capability to make decisions, to user interface with other computer tools, but likewise to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can take pleasure in a life of luxurious leisure if the machine-produced wealth is shared, or the majority of people can end up badly poor if the machine-owners effectively lobby versus wealth redistribution. Up until now, the trend appears to be towards the 2nd option, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will require governments to embrace a universal standard income. [168]
See likewise
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI impact AI safety - Research location on making AI safe and helpful AI alignment - AI conformance to the intended goal A.I. Rising - 2018 movie directed by Lazar Bodroža Expert system Automated device learning - Process of automating the application of maker learning BRAIN Initiative - Collaborative public-private research study effort announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of artificial intelligence to play various games Generative expert system - AI system capable of generating content in response to prompts Human Brain Project - Scientific research task Intelligence amplification - Use of infotech to augment human intelligence (IA). Machine ethics - Moral behaviours of man-made machines. Moravec's paradox. Multi-task knowing - Solving several device learning tasks at the exact same time. Neural scaling law - Statistical law in machine learning. Outline of expert system - Overview of and topical guide to expert system. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or type of artificial intelligence. Transfer learning - Artificial intelligence method. Loebner Prize - Annual AI competition. Hardware for expert system - Hardware specifically created and optimized for synthetic intelligence. Weak artificial intelligence - Form of expert system.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the article Chinese room. ^ AI founder John McCarthy writes: "we can not yet characterize in basic what type of computational procedures we desire to call intelligent. " [26] (For a conversation of some meanings of intelligence used by artificial intelligence scientists, see viewpoint of expert system.). ^ The Lighthill report particularly criticized AI's "grand objectives" and led the dismantling of AI research study in England. [55] In the U.S., DARPA ended up being determined to money only "mission-oriented direct research study, rather than standard undirected research". [56] [57] ^ As AI founder John McCarthy writes "it would be a fantastic relief to the remainder of the employees in AI if the developers of new basic formalisms would reveal their hopes in a more secured type than has actually often been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As specified in a standard AI textbook: "The assertion that devices might perhaps act wisely (or, perhaps better, act as if they were intelligent) is called the 'weak AI' hypothesis by theorists, and the assertion that machines that do so are in fact thinking (rather than simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to ensure that synthetic general intelligence advantages all of humanity. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is creating artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were identified as being active in 2020. ^ a b c "AI timelines: What do specialists in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton gives up Google and warns of threat ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can avoid the bad actors from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows sparks of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The genuine danger is not AI itself however the method we release it. ^ "Impressed by expert system? Experts state AGI is following, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential risks to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last creation that humankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the danger of extinction from AI must be an international top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists alert of danger of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating devices that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential danger". Medium. There is no reason to fear AI as an existential threat. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the complete variety of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is changing our world - it is on everyone to make sure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent qualities is based upon the subjects covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The principle of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists dispute whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar examination to AP Biology. Here's a list of difficult exams both AI variations have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software engineers prevented the term artificial intelligence for fear of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of maker intelligence: Despite progress in machine intelligence, synthetic basic intelligence is still a significant challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not become a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic expert system will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A survey of skilled opinion. In Fundamental issues of artificial intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as clever as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI golden zone between narrow and basic AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are already seeing an early example of an AGI system in the recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is arguable, however the consensus is that it is not AGI. ... If nothing else, GPT-3 informs us there is a happy medium between narrow and general AI. ^ Quach, Katyanna. "A developer constructed an AI chatbot utilizing GPT-3 that helped a guy speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can perform over 600 jobs, from playing video games to managing robots", TechCrunch, archived from the initial on 16 June 2022, recovered 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could rival human intelligence in 'just a few years,' says CEO of Google's main A.I. research study lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody seems to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in present research, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer system may become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (estimated in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced quote in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for interest by the field about why a program behaves the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the company's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense exceed benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, risks, strategies (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that people will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security danger' to Australia, Senate questions states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the ramifications of expert system - but are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook dispute in between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI". The interesting Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI risk: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report cautions". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger positioned but synthetic intelligence can not be disregarded". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring worries over AI, caution researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator states big tech is lying about AI extinction danger". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market impact potential of large language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of workers could see their jobs impacted by AI. These are the tasks most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we need universal basic income due to the fact that 'in the future, physical work will be a choice'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic basic intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Perspective, archived from the original on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Artificial Intelligence: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The supreme effort is to make computer programs that can solve issues and accomplish objectives on the planet along with people. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, retrieved 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, recovered 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, obtained 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York: Oxford University Press, archived from the initial on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, recovered 4 September 2013 - via ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for wiki.vifm.info Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what may be called "Dyson's Law") that "Any system easy sufficient to be understandable will not be complicated enough to act wisely, while any system complicated enough to behave smartly will be too made complex to understand." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead simple silly. They work, however they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Choice" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what distinguishes us from makers. For biological animals, reason and purpose originate from acting worldwide and experiencing the consequences. Expert systems - disembodied, complete strangers to blood, sweat, and tears - have no event for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically anticipate that those who want to get rich from AI are going to have the interests of the rest of us close at heart,' ... composes [Gary Marcus] 'We can't rely on federal governments driven by project financing contributions [from tech companies] to press back.' ... Marcus information the needs that citizens must make of their governments and the tech companies. They consist of transparency on how AI systems work; payment for people if their data [are] used to train LLMs (big language model) s and the right to permission to this usage; and the capability to hold tech companies responsible for the damages they trigger by removing Section 230, imposing cash penalites, and passing stricter product liability laws ... Marcus likewise suggests ... that a new, AI-specific federal company, comparable to the FDA, the FCC, or the FTC, may offer the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... develop [ing] a professional licensing regime for engineers that would work in a comparable method to medical licenses, malpractice suits, and the Hippocratic oath in medicine. 'What if, like doctors,' she asks ..., 'AI engineers likewise pledged to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually baffled humans for decades, reveals the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competitors has actually revealed that although NLP (natural-language processing) models are capable of amazing feats, their capabilities are quite restricted by the quantity of context they get. This [...] might cause [problems] for researchers who hope to utilize them to do things such as examine ancient languages. In many cases, there are few historic records on long-gone civilizations to act as training information for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to generate phony videos equivalent from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we indicate reasonable videos produced using expert system that actually deceive people, then they hardly exist. The fakes aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, wiki.rrtn.org in general, operating in our media as counterfeited proof. Their function much better resembles that of animations, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to avoid humanizing machine-learning designs utilized in clinical research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the newest, buzziest systems of synthetic basic intelligence are stymmied by the same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, presented and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead authorities to overlook contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test however showed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that require genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared not able to factor rationally and tried to depend on its huge database of ... truths stemmed from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are effective however unreliable. Rules-based systems can not deal with situations their developers did not expect. Learning systems are limited by the data on which they were trained. AI failures have already led to tragedy. Advanced auto-pilot functions in cars, although they perform well in some situations, have driven cars and trucks without alerting into trucks, concrete barriers, and parked cars. In the wrong situation, photorum.eclat-mauve.fr AI systems go from supersmart to superdumb in an instant. When an enemy is trying to control and hack an AI system, the dangers are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by new technologies but count on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.