Artificial General Intelligence
Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or surpasses human cognitive abilities across a large range of cognitive tasks. This contrasts with narrow AI, which is limited to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that significantly exceeds human cognitive abilities. AGI is thought about among the definitions of strong AI.
Creating AGI is a primary goal of AI research and of business such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research and development jobs throughout 37 nations. [4]
The timeline for achieving AGI stays a subject of ongoing debate among researchers and professionals. As of 2023, some argue that it might be possible in years or years; others preserve it may take a century or longer; a minority believe it may never ever be attained; and another minority declares that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has actually expressed concerns about the quick progress towards AGI, recommending it might be attained sooner than lots of anticipate. [7]
There is argument on the precise meaning of AGI and regarding whether modern-day big language designs (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a common topic in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many experts on AI have mentioned that alleviating the danger of human extinction postured by AGI should be an international priority. [14] [15] Others discover the advancement of AGI to be too remote to provide such a threat. [16] [17]
Terminology
AGI is also called strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or basic smart action. [21]
Some academic sources reserve the term "strong AI" for computer programs that experience life or awareness. [a] In contrast, weak AI (or narrow AI) has the ability to resolve one particular issue but lacks general cognitive capabilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the same sense as human beings. [a]
Related principles consist of synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical type of AGI that is far more typically intelligent than human beings, [23] while the concept of transformative AI associates with AI having a big impact on society, for example, comparable to the agricultural or commercial transformation. [24]
A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They define 5 levels of AGI: emerging, proficient, professional, virtuoso, and superhuman. For example, a qualified AGI is specified as an AI that outperforms 50% of knowledgeable adults in a wide range of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly specified but with a limit of 100%. They consider large language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have actually been proposed. One of the leading proposals is the Turing test. However, there are other popular definitions, and some scientists disagree with the more popular methods. [b]
Intelligence characteristics
Researchers generally hold that intelligence is needed to do all of the following: [27]
factor, use strategy, fix puzzles, and make judgments under uncertainty
represent understanding, consisting of sound judgment knowledge
strategy
find out
- communicate in natural language
- if necessary, incorporate these abilities in conclusion of any offered goal
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and choice making) consider extra qualities such as imagination (the ability to form unique psychological images and concepts) [28] and autonomy. [29]
Computer-based systems that show a number of these capabilities exist (e.g. see computational creativity, automated reasoning, decision support group, robotic, evolutionary computation, intelligent representative). There is debate about whether modern-day AI systems possess them to an adequate degree.
Physical qualities
Other abilities are thought about desirable in smart systems, as they might affect intelligence or help in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, etc), and - the ability to act (e.g. move and control items, change area to explore, and so on).
This includes the ability to discover and react to hazard. [31]
Although the ability to sense (e.g. see, hear, etc) and the ability to act (e.g. move and online-learning-initiative.org control items, change area to explore, etc) can be preferable for some smart systems, [30] these physical capabilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that large language models (LLMs) may currently be or become AGI. Even from a less optimistic perspective on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system is adequate, offered it can process input (language) from the external world in location of human senses. This interpretation aligns with the understanding that AGI has actually never ever been proscribed a specific physical embodiment and therefore does not require a capability for locomotion or traditional "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to validate human-level AGI have been thought about, consisting of: [33] [34]
The idea of the test is that the machine needs to attempt and pretend to be a guy, by responding to concerns put to it, and it will only pass if the pretence is reasonably convincing. A significant part of a jury, who should not be skilled about makers, must be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would require to carry out AGI, since the option is beyond the capabilities of a purpose-specific algorithm. [47]
There are numerous issues that have been conjectured to require general intelligence to solve along with human beings. Examples consist of computer vision, natural language understanding, and dealing with unanticipated circumstances while solving any real-world issue. [48] Even a specific task like translation requires a maker to check out and compose in both languages, follow the author's argument (factor), comprehend the context (knowledge), and consistently recreate the author's initial intent (social intelligence). All of these problems need to be solved concurrently in order to reach human-level machine performance.
However, a number of these jobs can now be carried out by contemporary large language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on many standards for reading comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research began in the mid-1950s. [50] The first generation of AI scientists were convinced that synthetic basic intelligence was possible and that it would exist in just a couple of decades. [51] AI pioneer Herbert A. Simon composed in 1965: "machines will be capable, within twenty years, of doing any work a man can do." [52]
Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they could develop by the year 2001. AI leader Marvin Minsky was a specialist [53] on the job of making HAL 9000 as reasonable as possible according to the agreement forecasts of the time. He said in 1967, "Within a generation ... the problem of creating 'expert system' will significantly be resolved". [54]
Several classical AI jobs, such as Doug Lenat's Cyc project (that began in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it became apparent that researchers had actually grossly underestimated the trouble of the project. Funding agencies became doubtful of AGI and put researchers under increasing pressure to produce useful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "bring on a table talk". [58] In response to this and the success of expert systems, both market and government pumped cash into the field. [56] [59] However, confidence in AI spectacularly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never satisfied. [60] For the second time in 20 years, AI researchers who predicted the impending accomplishment of AGI had been misinterpreted. By the 1990s, AI researchers had a reputation for making vain promises. They became reluctant to make forecasts at all [d] and avoided mention of "human level" artificial intelligence for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI achieved business success and academic respectability by focusing on particular sub-problems where AI can produce proven outcomes and commercial applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the technology market, and research study in this vein is heavily moneyed in both academia and industry. Since 2018 [upgrade], development in this field was thought about an emerging trend, and a fully grown phase was anticipated to be reached in more than ten years. [64]
At the turn of the century, numerous traditional AI scientists [65] hoped that strong AI could be established by integrating programs that resolve various sub-problems. Hans Moravec wrote in 1988:
I am positive that this bottom-up path to artificial intelligence will one day satisfy the conventional top-down path more than half method, all set to supply the real-world skills and the commonsense knowledge that has actually been so frustratingly evasive in reasoning programs. Fully smart machines will result when the metaphorical golden spike is driven unifying the two efforts. [65]
However, even at the time, this was disputed. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by stating:
The expectation has actually often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way meet "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is really only one practical path from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we need to even try to reach such a level, considering that it looks as if arriving would just amount to uprooting our signs from their intrinsic meanings (thereby merely reducing ourselves to the practical equivalent of a programmable computer). [66]
Modern artificial general intelligence research
The term "synthetic general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the ramifications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the ability to please goals in a wide variety of environments". [68] This kind of AGI, defined by the ability to increase a mathematical meaning of intelligence rather than exhibit human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The very first summertime school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and including a number of visitor speakers.
As of 2023 [update], a little number of computer system scientists are active in AGI research, and numerous contribute to a series of AGI conferences. However, increasingly more scientists have an interest in open-ended learning, [76] [77] which is the concept of permitting AI to continually find out and innovate like people do.
Feasibility
As of 2023, the development and potential accomplishment of AGI remains a subject of intense argument within the AI community. While conventional agreement held that AGI was a far-off goal, current advancements have actually led some researchers and market figures to claim that early kinds of AGI might already exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "devices will be capable, within twenty years, of doing any work a man can do". This forecast failed to come real. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century because it would need "unforeseeable and basically unpredictable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between contemporary computing and human-level expert system is as broad as the gulf between existing area flight and practical faster-than-light spaceflight. [80]
A more obstacle is the lack of clarity in specifying what intelligence entails. Does it need awareness? Must it show the capability to set objectives as well as pursue them? Is it purely a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are centers such as preparation, thinking, and causal understanding required? Does intelligence need explicitly reproducing the brain and its particular professors? Does it need emotions? [81]
Most AI researchers think strong AI can be accomplished in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of achieving strong AI. [82] [83] John McCarthy is among those who believe human-level AI will be achieved, however that today level of development is such that a date can not accurately be anticipated. [84] AI specialists' views on the expediency of AGI wax and subside. Four polls carried out in 2012 and 2013 suggested that the mean price quote amongst specialists for when they would be 50% confident AGI would get here was 2040 to 2050, depending on the survey, with the mean being 2081. Of the specialists, 16.5% addressed with "never" when asked the very same concern but with a 90% confidence instead. [85] [86] Further current AGI development considerations can be discovered above Tests for verifying human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year timespan there is a strong bias towards anticipating the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They examined 95 forecasts made in between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft scientists released a comprehensive examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it could reasonably be deemed an early (yet still incomplete) variation of a synthetic general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 exceeds 99% of humans on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a significant level of general intelligence has currently been attained with frontier designs. They composed that reluctance to this view comes from 4 main reasons: a "healthy apprehension about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "devotion to human (or biological) exceptionalism", or a "issue about the economic ramifications of AGI". [91]
2023 also marked the introduction of large multimodal designs (large language models capable of processing or producing numerous methods such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of models that "spend more time thinking before they respond". According to Mira Murati, this ability to believe before reacting represents a new, extra paradigm. It improves model outputs by spending more computing power when generating the response, whereas the design scaling paradigm improves outputs by increasing the model size, training data and training compute power. [93] [94]
An OpenAI staff member, Vahid Kazemi, declared in 2024 that the business had achieved AGI, specifying, "In my viewpoint, we have actually currently accomplished AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "much better than the majority of human beings at many jobs." He likewise attended to criticisms that large language designs (LLMs) simply follow predefined patterns, comparing their knowing procedure to the scientific approach of observing, hypothesizing, and validating. These declarations have actually triggered debate, as they count on a broad and non-traditional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models show exceptional adaptability, they might not completely fulfill this requirement. Notably, Kazemi's remarks came soon after OpenAI removed "AGI" from the regards to its partnership with Microsoft, prompting speculation about the business's tactical intents. [95]
Timescales
Progress in synthetic intelligence has actually traditionally gone through periods of fast progress separated by durations when progress appeared to stop. [82] Ending each hiatus were essential advances in hardware, software application or both to create area for more progress. [82] [98] [99] For example, the hardware offered in the twentieth century was not sufficient to carry out deep learning, which requires great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that quotes of the time needed before a genuinely flexible AGI is constructed vary from ten years to over a century. Since 2007 [upgrade], the consensus in the AGI research community appeared to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI researchers have provided a large range of viewpoints on whether development will be this rapid. A 2012 meta-analysis of 95 such viewpoints discovered a bias towards forecasting that the onset of AGI would occur within 16-26 years for contemporary and historical forecasts alike. That paper has actually been slammed for how it categorized viewpoints as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, significantly better than the second-best entry's rate of 26.3% (the conventional technique used a weighted sum of ratings from different pre-defined classifiers). [105] AlexNet was related to as the preliminary ground-breaker of the present deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly offered and freely available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old child in first grade. An adult pertains to about 100 usually. Similar tests were performed in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model capable of performing numerous diverse tasks without specific training. According to Gary Grossman in a VentureBeat article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the very same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI requested modifications to the chatbot to abide by their security guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of performing more than 600 different jobs. [110]
In 2023, Microsoft Research published a research study on an early version of OpenAI's GPT-4, competing that it exhibited more general intelligence than previous AI designs and showed human-level efficiency in tasks covering numerous domains, such as mathematics, coding, and law. This research stimulated a dispute on whether GPT-4 could be considered an early, incomplete version of synthetic basic intelligence, highlighting the need for more exploration and assessment of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton mentioned that: [112]
The concept that this things could in fact get smarter than people - a few individuals thought that, [...] But the majority of people believed it was method off. And I believed it was way off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis similarly stated that "The development in the last few years has been pretty unbelievable", and that he sees no reason it would decrease, anticipating AGI within a years or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within 5 years, AI would be capable of passing any test a minimum of as well as humans. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI staff member, approximated AGI by 2027 to be "strikingly plausible". [115]
Whole brain emulation
While the development of transformer models like in ChatGPT is considered the most promising path to AGI, [116] [117] entire brain emulation can serve as an alternative method. With entire brain simulation, a brain model is developed by scanning and mapping a biological brain in detail, and after that copying and replicating it on a computer system or another computational device. The simulation design need to be sufficiently faithful to the original, so that it behaves in virtually the same way as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study purposes. It has actually been discussed in expert system research study [103] as a method to strong AI. Neuroimaging technologies that might provide the needed in-depth understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of sufficient quality will appear on a similar timescale to the computing power needed to emulate it.
Early estimates
For low-level brain simulation, a very powerful cluster of computer systems or GPUs would be required, provided the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by their adult years. Estimates vary for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based upon a simple switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at different quotes for the hardware required to equal the human brain and adopted a figure of 1016 computations per 2nd (cps). [e] (For contrast, if a "computation" was comparable to one "floating-point operation" - a procedure used to rate present supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, accomplished in 2011, while 1018 was accomplished in 2022.) He used this figure to forecast the essential hardware would be readily available at some point between 2015 and 2025, if the exponential growth in computer system power at the time of writing continued.
Current research
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has developed an especially comprehensive and publicly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The synthetic nerve cell design presumed by Kurzweil and used in lots of present synthetic neural network executions is easy compared with biological neurons. A brain simulation would likely need to record the comprehensive cellular behaviour of biological nerve cells, presently comprehended just in broad outline. The overhead presented by complete modeling of the biological, chemical, and physical information of neural behaviour (specifically on a molecular scale) would require computational powers numerous orders of magnitude larger than Kurzweil's quote. In addition, the price quotes do not represent glial cells, which are known to contribute in cognitive processes. [125]
A basic criticism of the simulated brain approach derives from embodied cognition theory which asserts that human embodiment is a vital element of human intelligence and is required to ground meaning. [126] [127] If this theory is appropriate, any totally practical brain model will require to incorporate more than just the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as a choice, however it is unidentified whether this would suffice.
Philosophical point of view
"Strong AI" as specified in viewpoint
In 1980, theorist John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference in between 2 hypotheses about expert system: [f]
Strong AI hypothesis: An artificial intelligence system can have "a mind" and "awareness". Weak AI hypothesis: An expert system system can (only) imitate it thinks and has a mind and awareness.
The very first one he called "strong" due to the fact that it makes a more powerful statement: it assumes something special has happened to the machine that surpasses those capabilities that we can test. The behaviour of a "weak AI" device would be exactly identical to a "strong AI" maker, but the latter would also have subjective mindful experience. This usage is likewise typical in academic AI research and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to mean "human level synthetic general intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that awareness is necessary for human-level AGI. Academic thinkers such as Searle do not believe that holds true, and to most expert system scientists the concern is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to know if it actually has mind - certainly, there would be no chance to tell. For AI research, Searle's "weak AI hypothesis" is comparable to the declaration "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for granted, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are two different things.
Consciousness
Consciousness can have various significances, and some aspects play substantial roles in sci-fi and the principles of artificial intelligence:
Sentience (or "remarkable consciousness"): The capability to "feel" perceptions or feelings subjectively, rather than the ability to reason about understandings. Some thinkers, such as David Chalmers, utilize the term "awareness" to refer solely to phenomenal awareness, which is approximately equivalent to sentience. [132] Determining why and how subjective experience occurs is referred to as the difficult problem of consciousness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be mindful. If we are not mindful, then it doesn't feel like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had achieved life, though this claim was extensively disputed by other experts. [135]
Self-awareness: To have mindful awareness of oneself as a different person, particularly to be purposely knowledgeable about one's own ideas. This is opposed to simply being the "subject of one's believed"-an os or debugger has the ability to be "knowledgeable about itself" (that is, to represent itself in the very same way it represents whatever else)-however this is not what individuals generally mean when they use the term "self-awareness". [g]
These traits have an ethical dimension. AI sentience would generate concerns of well-being and legal defense, similarly to animals. [136] Other elements of awareness associated to cognitive abilities are also appropriate to the idea of AI rights. [137] Determining how to incorporate sophisticated AI with existing legal and social frameworks is an emerging issue. [138]
Benefits
AGI could have a wide range of applications. If oriented towards such goals, AGI could assist alleviate different issues in the world such as cravings, poverty and health problems. [139]
AGI might improve performance and efficiency in a lot of jobs. For instance, in public health, AGI might speed up medical research study, significantly versus cancer. [140] It could look after the elderly, [141] and equalize access to quick, premium medical diagnostics. It could provide enjoyable, cheap and tailored education. [141] The need to work to subsist might become obsolete if the wealth produced is properly rearranged. [141] [142] This also raises the concern of the location of humans in a radically automated society.
AGI might also help to make reasonable decisions, and to expect and avoid disasters. It could also help to enjoy the advantages of potentially catastrophic technologies such as nanotechnology or climate engineering, while preventing the associated risks. [143] If an AGI's primary objective is to prevent existential disasters such as human termination (which could be hard if the Vulnerable World Hypothesis ends up being real), [144] it might take measures to dramatically decrease the risks [143] while lessening the effect of these steps on our quality of life.
Risks
Existential threats
AGI might represent numerous types of existential threat, which are dangers that threaten "the premature termination of Earth-originating smart life or the long-term and extreme destruction of its potential for preferable future development". [145] The threat of human extinction from AGI has actually been the subject of lots of debates, but there is likewise the possibility that the development of AGI would cause a completely problematic future. Notably, it could be utilized to spread and maintain the set of worths of whoever develops it. If humankind still has ethical blind spots similar to slavery in the past, AGI might irreversibly entrench it, avoiding moral progress. [146] Furthermore, AGI might help with mass surveillance and indoctrination, which could be used to produce a stable repressive around the world totalitarian program. [147] [148] There is likewise a threat for the devices themselves. If devices that are sentient or otherwise worthy of ethical factor to consider are mass created in the future, participating in a civilizational path that forever overlooks their welfare and interests could be an existential catastrophe. [149] [150] Considering how much AGI could enhance humanity's future and assistance minimize other existential threats, Toby Ord calls these existential threats "an argument for proceeding with due caution", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI postures an existential risk for people, and that this risk requires more attention, is questionable however has been endorsed in 2023 by numerous public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized widespread indifference:
So, dealing with possible futures of incalculable advantages and threats, the professionals are undoubtedly doing whatever possible to ensure the very best result, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll show up in a couple of decades,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is taking place with AI. [153]
The prospective fate of humankind has actually often been compared to the fate of gorillas threatened by human activities. The comparison mentions that higher intelligence permitted humanity to dominate gorillas, which are now susceptible in methods that they could not have anticipated. As an outcome, the gorilla has actually become a threatened species, not out of malice, however just as a collateral damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate humankind which we should beware not to anthropomorphize them and translate their intents as we would for human beings. He said that individuals won't be "clever adequate to design super-intelligent machines, yet extremely dumb to the point of giving it moronic objectives with no safeguards". [155] On the other side, the concept of crucial convergence suggests that nearly whatever their goals, smart representatives will have factors to try to make it through and acquire more power as intermediary actions to attaining these objectives. Which this does not need having feelings. [156]
Many scholars who are worried about existential danger advocate for more research study into resolving the "control issue" to respond to the concern: what kinds of safeguards, algorithms, or architectures can programmers execute to increase the probability that their recursively-improving AI would continue to act in a friendly, rather than harmful, manner after it reaches superintelligence? [157] [158] Solving the control problem is complicated by the AI arms race (which could lead to a race to the bottom of security preventative measures in order to launch items before rivals), [159] and making use of AI in weapon systems. [160]
The thesis that AI can present existential threat likewise has critics. Skeptics usually say that AGI is not likely in the short-term, or that issues about AGI distract from other issues connected to existing AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for lots of individuals beyond the innovation market, existing chatbots and LLMs are currently viewed as though they were AGI, causing further misunderstanding and fear. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an illogical belief in an omnipotent God. [163] Some scientists believe that the communication campaigns on AI existential risk by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulatory capture and to pump up interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other market leaders and researchers, issued a joint statement asserting that "Mitigating the threat of termination from AI must be a worldwide priority together with other societal-scale threats such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. labor force might have at least 10% of their work jobs affected by the intro of LLMs, while around 19% of employees might see a minimum of 50% of their jobs affected". [166] [167] They think about office employees to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, ability to make decisions, to interface with other computer system tools, however likewise to control robotized bodies.
According to Stephen Hawking, the outcome of automation on the lifestyle will depend upon how the wealth will be redistributed: [142]
Everyone can take pleasure in a life of luxurious leisure if the machine-produced wealth is shared, or the majority of people can end up badly poor if the machine-owners effectively lobby against wealth redistribution. Up until now, the pattern appears to be toward the second option, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will require governments to adopt a universal standard earnings. [168]
See also
Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain AI impact AI security - Research location on making AI safe and beneficial AI positioning - AI conformance to the desired objective A.I. Rising - 2018 movie directed by Lazar Bodroža Expert system Automated device learning - Process of automating the application of device knowing BRAIN Initiative - Collaborative public-private research study effort revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General video game playing - Ability of synthetic intelligence to play different games Generative expert system - AI system efficient in creating material in action to triggers Human Brain Project - Scientific research study project Intelligence amplification - Use of information technology to enhance human intelligence (IA). Machine ethics - Moral behaviours of manufactured devices. Moravec's paradox. Multi-task knowing - Solving several device finding out jobs at the same time. Neural scaling law - Statistical law in artificial intelligence. Outline of synthetic intelligence - Overview of and topical guide to artificial intelligence. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or type of expert system. Transfer knowing - Machine learning strategy. Loebner Prize - Annual AI competition. Hardware for expert system - Hardware specially created and enhanced for synthetic intelligence. Weak synthetic intelligence - Form of expert system.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the short article Chinese space. ^ AI founder John McCarthy composes: "we can not yet define in general what type of computational procedures we want to call intelligent. " [26] (For a conversation of some meanings of intelligence utilized by expert system researchers, see philosophy of expert system.). ^ The Lighthill report particularly slammed AI's "grandiose objectives" and led the dismantling of AI research in England. [55] In the U.S., DARPA ended up being identified to fund only "mission-oriented direct research study, instead of basic undirected research study". [56] [57] ^ As AI creator John McCarthy composes "it would be an excellent relief to the rest of the workers in AI if the creators of brand-new general formalisms would express their hopes in a more protected kind than has sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As defined in a standard AI book: "The assertion that makers could perhaps act wisely (or, maybe much better, act as if they were smart) is called the 'weak AI' hypothesis by theorists, and the assertion that makers that do so are actually believing (rather than mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to perform a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that synthetic basic intelligence advantages all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is producing artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were determined as being active in 2020. ^ a b c "AI timelines: What do specialists in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton stops Google and alerts of threat ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can prevent the bad stars from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The genuine hazard is not AI itself however the way we release it. ^ "Impressed by artificial intelligence? Experts state AGI is following, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could pose existential dangers to humankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last invention that humanity requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of termination from AI need to be an international priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists alert of threat of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating machines that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no reason to fear AI as an existential hazard. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "machine intelligence with the full variety of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is changing our world - it is on everyone to make sure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart qualities is based on the topics covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reevaluated: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine kid - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar test to AP Biology. Here's a list of hard tests both AI variations have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, asteroidsathome.net Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software engineers avoided the term expert system for worry of being considered as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of machine intelligence: Despite development in maker intelligence, artificial general intelligence is still a major challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not turn into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic artificial intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us utopia or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in expert system: A study of professional viewpoint. In Fundamental concerns of synthetic intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as smart as Siri - but a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're entering the AI golden zone between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are currently seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is arguable, however the consensus is that it is not AGI. ... If nothing else, GPT-3 informs us there is a middle ground between narrow and general AI. ^ Quach, Katyanna. "A designer constructed an AI chatbot utilizing GPT-3 that assisted a man speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can carry out over 600 jobs, from playing video games to controlling robotics", TechCrunch, archived from the initial on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could match human intelligence in 'simply a few years,' states CEO of Google's main A.I. research lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. " AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody appears to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A large range of views in present research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer system may become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced estimate in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for interest by the field about why a program behaves the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense exceed benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, risks, techniques (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that human beings will ruin ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security danger' to Australia, Senate inquiry states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the ramifications of artificial intelligence - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The fascinating Facebook dispute in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to catastrophic AGI risk: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report warns". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over risk posed however artificial intelligence can not be neglected". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for garagesale.es Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, alert researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator says huge tech is lying about AI extinction danger". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market impact potential of big language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of employees could see their jobs impacted by AI. These are the jobs most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we need universal fundamental income since 'in the future, physical work will be an option'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Expert System. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial general intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, obtained 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Point of view, archived from the initial on 17 August 2007, recovered 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Artificial Intelligence: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The ultimate effort is to make computer system programs that can fix issues and achieve goals in the world along with humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer system hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, retrieved 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, recovered 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, obtained 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York: Oxford University Press, archived from the initial on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, obtained 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what may be called "Dyson's Law") that "Any system simple sufficient to be understandable will not be made complex enough to act wisely, while any system complicated enough to act intelligently will be too complicated to comprehend." (p. 197.) Computer scientist Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead simple foolish. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what distinguishes us from makers. For biological animals, factor and function come from acting in the world and experiencing the effects. Expert systems - disembodied, strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably anticipate that those who intend to get rich from AI are going to have the interests of the rest people close at heart,' ... writes [Gary Marcus] 'We can't rely on federal governments driven by project financing contributions [from tech business] to push back.' ... Marcus information the needs that citizens need to make of their governments and the tech business. They consist of transparency on how AI systems work; settlement for people if their information [are] used to train LLMs (big language design) s and the right to grant this usage; and the ability to hold tech companies responsible for the harms they trigger by removing Section 230, enforcing money penalites, and passing stricter product liability laws ... Marcus likewise suggests ... that a new, AI-specific federal agency, similar to the FDA, the FCC, or the FTC, may offer the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... develop [ing] an expert licensing routine for engineers that would work in a comparable method to medical licenses, malpractice fits, and the Hippocratic oath in medicine. 'What if, like physicians,' she asks ..., 'AI engineers likewise promised to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually stumped people for decades, exposes the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has actually revealed that although NLP (natural-language processing) models are capable of extraordinary tasks, their abilities are quite restricted by the quantity of context they get. This [...] might trigger [problems] for researchers who wish to use them to do things such as evaluate ancient languages. In some cases, there are couple of historic records on long-gone civilizations to function as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to generate fake videos identical from genuine ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean reasonable videos produced utilizing expert system that actually trick individuals, then they hardly exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in basic, operating in our media as counterfeited evidence. Their role better resembles that of animations, especially smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to avoid humanizing machine-learning models utilized in scientific research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of artificial general intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, presented and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead cops to disregard contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test however revealed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that require genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared unable to reason rationally and attempted to rely on its vast database of ... facts originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are powerful however unreliable. Rules-based systems can not handle scenarios their programmers did not expect. Learning systems are limited by the information on which they were trained. AI failures have currently led to catastrophe. Advanced auto-pilot functions in automobiles, although they carry out well in some circumstances, have actually driven automobiles without alerting into trucks, concrete barriers, and parked cars. In the wrong scenario, AI systems go from supersmart to superdumb in an instant. When an opponent is trying to manipulate and hack an AI system, the threats are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by brand-new innovations however rely on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.