Artificial General Intelligence
Artificial general intelligence (AGI) is a type of expert system (AI) that matches or surpasses human cognitive abilities across a vast array of cognitive jobs. This contrasts with narrow AI, which is restricted to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that significantly surpasses human cognitive abilities. AGI is considered among the definitions of strong AI.
Creating AGI is a main objective of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 study recognized 72 active AGI research and development projects across 37 countries. [4]
The timeline for achieving AGI stays a topic of ongoing argument among researchers and professionals. Since 2023, some argue that it might be possible in years or years; others maintain it might take a century or longer; a minority think it may never ever be attained; and another minority claims that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has revealed concerns about the quick development towards AGI, pipewiki.org recommending it could be achieved quicker than lots of expect. [7]
There is debate on the exact definition of AGI and relating to whether modern-day big language models (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a common subject in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many experts on AI have mentioned that mitigating the threat of human termination postured by AGI ought to be a worldwide priority. [14] [15] Others discover the development of AGI to be too remote to present such a danger. [16] [17]
Terminology
AGI is also referred to as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or basic intelligent action. [21]
Some academic sources reserve the term "strong AI" for computer system programs that experience life or consciousness. [a] In contrast, weak AI (or narrow AI) has the ability to solve one specific problem but does not have basic cognitive abilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as human beings. [a]
Related ideas include artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical kind of AGI that is much more normally smart than people, [23] while the notion of transformative AI relates to AI having a large influence on society, for instance, similar to the agricultural or commercial transformation. [24]
A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They define five levels of AGI: emerging, competent, professional, virtuoso, and superhuman. For instance, a skilled AGI is defined as an AI that outperforms 50% of competent adults in a large range of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise specified however with a limit of 100%. They consider big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have actually been proposed. Among the leading propositions is the Turing test. However, there are other well-known definitions, and some scientists disagree with the more popular methods. [b]
Intelligence traits
Researchers normally hold that intelligence is required to do all of the following: [27]
factor, use method, fix puzzles, and make judgments under unpredictability
represent understanding, consisting of good sense knowledge
plan
discover
- communicate in natural language
- if required, integrate these abilities in completion of any given objective
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and decision making) consider extra traits such as creativity (the capability to form unique mental images and principles) [28] and autonomy. [29]
Computer-based systems that show much of these capabilities exist (e.g. see computational creativity, automated reasoning, decision assistance system, robot, evolutionary computation, intelligent agent). There is debate about whether modern-day AI systems have them to a sufficient degree.
Physical characteristics
Other capabilities are thought about desirable in smart systems, as they might affect intelligence or aid in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, etc), and - the ability to act (e.g. move and control things, change location to check out, etc).
This includes the ability to detect and react to threat. [31]
Although the ability to sense (e.g. see, hear, and so on) and the capability to act (e.g. move and control things, change area to explore, and so on) can be desirable for some intelligent systems, [30] these physical capabilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that big language designs (LLMs) may already be or become AGI. Even from a less positive viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system is enough, provided it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has actually never been proscribed a specific physical personification and thus does not demand a capability for mobility or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests indicated to verify human-level AGI have been considered, consisting of: [33] [34]
The concept of the test is that the maker needs to attempt and pretend to be a man, by answering concerns put to it, and it will just pass if the pretence is fairly persuading. A considerable part of a jury, who must not be skilled about makers, need to be taken in by the pretence. [37]
AI-complete issues
A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to fix it, one would need to execute AGI, since the service is beyond the capabilities of a purpose-specific algorithm. [47]
There are numerous issues that have been conjectured to require basic intelligence to solve along with human beings. Examples include computer vision, natural language understanding, and handling unanticipated scenarios while fixing any real-world issue. [48] Even a specific job like translation needs a device to read and compose in both languages, follow the author's argument (factor), understand the context (knowledge), and faithfully reproduce the author's initial intent (social intelligence). All of these problems require to be resolved all at once in order to reach human-level maker efficiency.
However, many of these tasks can now be performed by modern-day large language models. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on lots of benchmarks for reading comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research started in the mid-1950s. [50] The first generation of AI scientists were encouraged that artificial basic intelligence was possible and that it would exist in simply a few decades. [51] AI pioneer Herbert A. Simon composed in 1965: "machines will be capable, within twenty years, of doing any work a male can do." [52]
Their predictions were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they could develop by the year 2001. AI leader Marvin Minsky was a specialist [53] on the project of making HAL 9000 as realistic as possible according to the consensus forecasts of the time. He stated in 1967, "Within a generation ... the problem of creating 'expert system' will significantly be resolved". [54]
Several classical AI tasks, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it ended up being apparent that scientists had grossly underestimated the difficulty of the job. Funding agencies ended up being doubtful of AGI and put scientists under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI objectives like "continue a casual conversation". [58] In response to this and the success of expert systems, both industry and federal government pumped money into the field. [56] [59] However, self-confidence in AI stunningly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never satisfied. [60] For the 2nd time in twenty years, AI scientists who predicted the impending accomplishment of AGI had actually been mistaken. By the 1990s, AI scientists had a track record for making vain pledges. They ended up being reluctant to make predictions at all [d] and prevented reference of "human level" expert system for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI attained industrial success and scholastic respectability by focusing on particular sub-problems where AI can produce proven results and industrial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now used extensively throughout the technology industry, and research in this vein is greatly moneyed in both academia and industry. As of 2018 [upgrade], advancement in this field was considered an emerging pattern, and a mature stage was expected to be reached in more than 10 years. [64]
At the turn of the century, many traditional AI scientists [65] hoped that strong AI might be developed by combining programs that solve different sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up path to expert system will one day fulfill the standard top-down route over half way, ready to provide the real-world competence and the commonsense understanding that has been so frustratingly evasive in thinking programs. Fully intelligent makers will result when the metaphorical golden spike is driven joining the two efforts. [65]
However, even at the time, this was challenged. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by stating:
The expectation has actually typically been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow satisfy "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper are valid, then this expectation is hopelessly modular and there is really just one viable path from sense to symbols: from the ground up. A free-floating symbolic level like the software application level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we ought to even try to reach such a level, since it looks as if getting there would just amount to uprooting our signs from their intrinsic meanings (thus merely lowering ourselves to the practical equivalent of a programmable computer). [66]
Modern synthetic basic intelligence research study
The term "artificial basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the capability to please objectives in a vast array of environments". [68] This kind of AGI, identified by the capability to maximise a mathematical meaning of intelligence instead of exhibit human-like behaviour, [69] was likewise called universal artificial intelligence. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The first summertime school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and including a number of guest lecturers.
Since 2023 [upgrade], a little number of computer system researchers are active in AGI research study, and many add to a series of AGI conferences. However, increasingly more researchers have an interest in open-ended learning, [76] [77] which is the idea of enabling AI to continuously learn and innovate like humans do.
Feasibility
Since 2023, the advancement and prospective accomplishment of AGI stays a subject of extreme dispute within the AI neighborhood. While conventional consensus held that AGI was a distant goal, current improvements have led some scientists and industry figures to claim that early types of AGI might currently exist. [78] AI leader Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a guy can do". This forecast stopped working to come real. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century because it would require "unforeseeable and essentially unforeseeable advancements" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between modern computing and human-level expert system is as broad as the gulf between existing area flight and practical faster-than-light spaceflight. [80]
A further difficulty is the lack of clarity in specifying what intelligence requires. Does it require awareness? Must it show the capability to set objectives in addition to pursue them? Is it simply a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are centers such as planning, thinking, and causal understanding required? Does intelligence need clearly replicating the brain and its particular faculties? Does it require feelings? [81]
Most AI scientists think strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is among those who think human-level AI will be accomplished, but that the present level of progress is such that a date can not properly be forecasted. [84] AI professionals' views on the expediency of AGI wax and subside. Four surveys carried out in 2012 and 2013 suggested that the median estimate among experts for when they would be 50% positive AGI would get here was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the experts, 16.5% answered with "never" when asked the very same concern but with a 90% confidence instead. [85] [86] Further current AGI development considerations can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year time frame there is a strong bias towards predicting the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They evaluated 95 forecasts made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft scientists released an in-depth examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, we believe that it might fairly be deemed an early (yet still incomplete) version of a synthetic general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 exceeds 99% of human beings on the Torrance tests of innovative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of basic intelligence has actually already been accomplished with frontier models. They composed that unwillingness to this view originates from 4 main reasons: a "healthy uncertainty about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "commitment to human (or biological) exceptionalism", or a "concern about the economic ramifications of AGI". [91]
2023 also marked the emergence of large multimodal models (large language models capable of processing or generating multiple techniques such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the first of a series of designs that "invest more time thinking before they respond". According to Mira Murati, this ability to think before responding represents a new, extra paradigm. It enhances model outputs by investing more computing power when creating the answer, whereas the design scaling paradigm improves outputs by increasing the model size, training information and training compute power. [93] [94]
An OpenAI employee, Vahid Kazemi, declared in 2024 that the business had actually accomplished AGI, mentioning, "In my opinion, we have currently achieved AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "better than many people at the majority of tasks." He likewise dealt with criticisms that large language designs (LLMs) merely follow predefined patterns, comparing their learning procedure to the scientific method of observing, assuming, and validating. These declarations have sparked argument, as they depend on a broad and non-traditional definition of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs demonstrate remarkable flexibility, they may not completely satisfy this standard. Notably, Kazemi's remarks came quickly after OpenAI removed "AGI" from the terms of its partnership with Microsoft, triggering speculation about the company's tactical objectives. [95]
Timescales
Progress in synthetic intelligence has actually traditionally gone through durations of quick development separated by durations when development appeared to stop. [82] Ending each hiatus were essential advances in hardware, software or both to produce area for more progress. [82] [98] [99] For instance, the hardware available in the twentieth century was not adequate to execute deep learning, which requires great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that price quotes of the time needed before a genuinely versatile AGI is developed vary from ten years to over a century. As of 2007 [update], the agreement in the AGI research community appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was possible. [103] Mainstream AI scientists have offered a large range of viewpoints on whether development will be this fast. A 2012 meta-analysis of 95 such viewpoints found a bias towards anticipating that the beginning of AGI would take place within 16-26 years for contemporary and historical predictions alike. That paper has actually been slammed for how it classified viewpoints as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the conventional approach used a weighted sum of scores from different pre-defined classifiers). [105] AlexNet was considered the initial ground-breaker of the present deep knowing wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on publicly available and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ worth of about 47, which corresponds approximately to a six-year-old child in first grade. A grownup comes to about 100 typically. Similar tests were performed in 2014, with the IQ rating reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language design capable of carrying out numerous varied tasks without specific training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI asked for changes to the chatbot to abide by their security guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in performing more than 600 different tasks. [110]
In 2023, Microsoft Research released a study on an early variation of OpenAI's GPT-4, contending that it displayed more general intelligence than previous AI models and showed human-level efficiency in jobs spanning numerous domains, such as mathematics, coding, and law. This research triggered a debate on whether GPT-4 could be thought about an early, insufficient variation of artificial general intelligence, emphasizing the requirement for further expedition and assessment of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton mentioned that: [112]
The concept that this stuff might really get smarter than individuals - a few individuals thought that, [...] But many people believed it was method off. And I believed it was way off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly said that "The progress in the last few years has actually been pretty amazing", and that he sees no reason why it would slow down, anticipating AGI within a years and even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within five years, AI would can passing any test a minimum of as well as human beings. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI employee, estimated AGI by 2027 to be "noticeably possible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is thought about the most promising course to AGI, [116] [117] entire brain emulation can serve as an alternative approach. With entire brain simulation, a brain design is built by scanning and mapping a biological brain in information, and then copying and simulating it on a computer system or another computational gadget. The simulation model need to be adequately devoted to the original, so that it acts in virtually the same way as the initial brain. [118] Whole brain emulation is a type of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research functions. It has been discussed in expert system research [103] as a method to strong AI. Neuroimaging innovations that could provide the necessary in-depth understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of enough quality will become offered on a similar timescale to the computing power required to emulate it.
Early approximates
For low-level brain simulation, a very effective cluster of computer systems or GPUs would be required, provided the massive amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, stabilizing by the adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based upon a simple switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at numerous price quotes for the hardware needed to equal the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "computation" was comparable to one "floating-point operation" - a measure used to rate existing supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, attained in 2011, while 1018 was achieved in 2022.) He utilized this figure to forecast the necessary hardware would be available at some point between 2015 and 2025, if the exponential growth in computer power at the time of composing continued.
Current research study
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually established a particularly detailed and publicly accessible atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based approaches
The synthetic nerve cell design presumed by Kurzweil and used in lots of existing artificial neural network executions is easy compared to biological nerve cells. A brain simulation would likely need to catch the detailed cellular behaviour of biological neurons, currently understood only in broad outline. The overhead introduced by complete modeling of the biological, chemical, and physical details of neural behaviour (particularly on a molecular scale) would need computational powers a number of orders of magnitude larger than Kurzweil's estimate. In addition, the quotes do not represent glial cells, which are known to play a role in cognitive procedures. [125]
A fundamental criticism of the simulated brain technique stems from embodied cognition theory which asserts that human embodiment is a vital element of human intelligence and is necessary to ground significance. [126] [127] If this theory is appropriate, any completely practical brain design will require to encompass more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, but it is unidentified whether this would suffice.
Philosophical point of view
"Strong AI" as defined in approach
In 1980, thinker John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction between 2 hypotheses about synthetic intelligence: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: A synthetic intelligence system can (only) act like it believes and has a mind and awareness.
The very first one he called "strong" due to the fact that it makes a stronger declaration: it assumes something unique has actually happened to the device that exceeds those abilities that we can check. The behaviour of a "weak AI" machine would be precisely similar to a "strong AI" machine, however the latter would likewise have subjective mindful experience. This usage is likewise common in scholastic AI research study and books. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to imply "human level synthetic general intelligence". [102] This is not the very same as Searle's strong AI, unless it is assumed that awareness is essential for human-level AGI. Academic philosophers such as Searle do not believe that holds true, and to most expert system scientists the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or systemcheck-wiki.de a simulation." [130] If the program can act as if it has a mind, then there is no requirement to know if it in fact has mind - certainly, there would be no chance to inform. For AI research study, Searle's "weak AI hypothesis" is equivalent to the declaration "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have different significances, and some aspects play substantial functions in sci-fi and the principles of expert system:
Sentience (or "remarkable awareness"): The capability to "feel" perceptions or emotions subjectively, instead of the capability to factor about understandings. Some theorists, such as David Chalmers, utilize the term "consciousness" to refer specifically to sensational consciousness, which is approximately comparable to sentience. [132] Determining why and how subjective experience occurs is called the tough issue of awareness. [133] Thomas Nagel discussed in 1974 that it "feels like" something to be mindful. If we are not mindful, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had accomplished sentience, though this claim was widely disputed by other professionals. [135]
Self-awareness: To have mindful awareness of oneself as a separate person, particularly to be consciously familiar with one's own thoughts. This is opposed to merely being the "subject of one's thought"-an os or debugger has the ability to be "familiar with itself" (that is, to represent itself in the exact same way it represents everything else)-but this is not what individuals usually mean when they utilize the term "self-awareness". [g]
These characteristics have a moral measurement. AI sentience would trigger concerns of welfare and legal defense, likewise to animals. [136] Other elements of awareness related to cognitive capabilities are likewise pertinent to the idea of AI rights. [137] Finding out how to integrate advanced AI with existing legal and social frameworks is an emergent problem. [138]
Benefits
AGI might have a variety of applications. If oriented towards such goals, AGI might help mitigate numerous problems on the planet such as hunger, hardship and health problems. [139]
AGI could improve performance and effectiveness in many tasks. For example, in public health, AGI could accelerate medical research study, notably against cancer. [140] It could take care of the elderly, [141] and equalize access to quick, premium medical diagnostics. It could use enjoyable, inexpensive and customized education. [141] The need to work to subsist might end up being obsolete if the wealth produced is correctly redistributed. [141] [142] This also raises the question of the location of people in a significantly automated society.
AGI could also help to make logical decisions, and to prepare for and prevent catastrophes. It might likewise assist to gain the benefits of potentially disastrous innovations such as nanotechnology or environment engineering, while avoiding the associated threats. [143] If an AGI's primary objective is to prevent existential catastrophes such as human extinction (which might be hard if the Vulnerable World Hypothesis ends up being true), [144] it could take steps to significantly minimize the risks [143] while reducing the effect of these procedures on our lifestyle.
Risks
Existential risks
AGI may represent multiple kinds of existential danger, which are dangers that threaten "the early extinction of Earth-originating smart life or the long-term and drastic destruction of its potential for preferable future advancement". [145] The threat of human extinction from AGI has been the subject of numerous disputes, however there is also the possibility that the advancement of AGI would lead to a completely problematic future. Notably, it might be utilized to spread out and protect the set of values of whoever establishes it. If mankind still has ethical blind spots comparable to slavery in the past, AGI may irreversibly entrench it, avoiding moral progress. [146] Furthermore, AGI could facilitate mass monitoring and indoctrination, which could be used to produce a steady repressive worldwide totalitarian routine. [147] [148] There is likewise a threat for the devices themselves. If machines that are sentient or otherwise worthwhile of ethical factor to consider are mass developed in the future, taking part in a civilizational path that indefinitely ignores their welfare and interests could be an existential disaster. [149] [150] Considering just how much AGI might improve humankind's future and help in reducing other existential dangers, Toby Ord calls these existential threats "an argument for proceeding with due caution", not for "deserting AI". [147]
Risk of loss of control and human termination
The thesis that AI postures an existential danger for human beings, and that this risk requires more attention, is questionable but has been endorsed in 2023 by many public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized widespread indifference:
So, facing possible futures of incalculable benefits and risks, the specialists are surely doing whatever possible to ensure the best result, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll show up in a few years,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The prospective fate of humanity has in some cases been compared to the fate of gorillas threatened by human activities. The comparison mentions that higher intelligence allowed mankind to control gorillas, which are now vulnerable in methods that they might not have anticipated. As an outcome, the gorilla has ended up being an endangered types, not out of malice, however merely as a security damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to control humanity which we need to be careful not to anthropomorphize them and analyze their intents as we would for human beings. He stated that people will not be "smart adequate to develop super-intelligent devices, yet ridiculously silly to the point of giving it moronic goals without any safeguards". [155] On the other side, the concept of crucial convergence recommends that practically whatever their goals, smart agents will have factors to try to survive and obtain more power as intermediary actions to attaining these goals. Which this does not need having feelings. [156]
Many scholars who are concerned about existential threat supporter for more research into solving the "control issue" to respond to the question: what kinds of safeguards, algorithms, or architectures can programmers implement to increase the likelihood that their recursively-improving AI would continue to act in a friendly, instead of harmful, way after it reaches superintelligence? [157] [158] Solving the control problem is complicated by the AI arms race (which might lead to a race to the bottom of safety precautions in order to launch products before rivals), [159] and making use of AI in weapon systems. [160]
The thesis that AI can pose existential danger also has detractors. Skeptics normally say that AGI is not likely in the short-term, or that concerns about AGI sidetrack from other concerns related to current AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for many individuals outside of the technology market, existing chatbots and LLMs are already viewed as though they were AGI, resulting in additional misunderstanding and worry. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence replacing an irrational belief in a supreme God. [163] Some scientists believe that the communication projects on AI existential threat by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulative capture and to inflate interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other industry leaders and researchers, provided a joint statement asserting that "Mitigating the risk of extinction from AI need to be an international top priority alongside other societal-scale dangers such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. workforce could have at least 10% of their work tasks impacted by the intro of LLMs, while around 19% of employees might see a minimum of 50% of their tasks affected". [166] [167] They think about office employees to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI could have a much better autonomy, capability to make choices, to interface with other computer system tools, however also to control robotized bodies.
According to Stephen Hawking, the outcome of automation on the lifestyle will depend upon how the wealth will be redistributed: [142]
Everyone can enjoy a life of elegant leisure if the machine-produced wealth is shared, or many people can wind up badly poor if the machine-owners successfully lobby against wealth redistribution. Up until now, the trend appears to be towards the second option, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will require governments to embrace a universal fundamental income. [168]
See also
Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain AI result AI safety - Research location on making AI safe and beneficial AI alignment - AI conformance to the designated goal A.I. Rising - 2018 movie directed by Lazar Bodroža Expert system Automated maker learning - Process of automating the application of maker learning BRAIN Initiative - Collaborative public-private research study initiative announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of expert system to play different games Generative synthetic intelligence - AI system efficient in creating material in action to prompts Human Brain Project - Scientific research study task Intelligence amplification - Use of info innovation to enhance human intelligence (IA). Machine principles - Moral behaviours of manufactured devices. Moravec's paradox. Multi-task knowing - Solving multiple maker discovering jobs at the exact same time. Neural scaling law - Statistical law in artificial intelligence. Outline of artificial intelligence - Overview of and topical guide to expert system. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or kind of expert system. Transfer learning - Artificial intelligence method. Loebner Prize - Annual AI competitors. Hardware for artificial intelligence - Hardware specifically created and optimized for expert system. Weak synthetic intelligence - Form of artificial intelligence.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the article Chinese space. ^ AI creator John McCarthy writes: "we can not yet characterize in general what sort of computational procedures we want to call smart. " [26] (For a conversation of some meanings of intelligence utilized by expert system researchers, see approach of artificial intelligence.). ^ The Lighthill report particularly criticized AI's "grandiose goals" and led the dismantling of AI research study in England. [55] In the U.S., DARPA ended up being identified to fund only "mission-oriented direct research, instead of fundamental undirected research study". [56] [57] ^ As AI creator John McCarthy writes "it would be a terrific relief to the remainder of the workers in AI if the innovators of brand-new basic formalisms would express their hopes in a more guarded form than has in some cases held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As defined in a standard AI book: "The assertion that machines might perhaps act intelligently (or, possibly much better, act as if they were smart) is called the 'weak AI' hypothesis by theorists, and the assertion that machines that do so are really thinking (rather than simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to guarantee that synthetic basic intelligence advantages all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is creating artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were determined as being active in 2020. ^ a b c "AI timelines: What do professionals in synthetic intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton gives up Google and alerts of danger ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can prevent the bad stars from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows sparks of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The real hazard is not AI itself however the method we release it. ^ "Impressed by artificial intelligence? Experts say AGI is coming next, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might posture existential dangers to humankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last development that mankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the threat of extinction from AI ought to be a global concern. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists warn of threat of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from creating makers that can outthink us in basic ways. ^ LeCun, Yann (June 2023). "AGI does not provide an existential threat". Medium. There is no reason to fear AI as an existential hazard. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "device intelligence with the full series of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is changing our world - it is on everyone to make certain that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent traits is based upon the topics covered by major AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reevaluated: The idea of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists challenge whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar test to AP Biology. Here's a list of tough tests both AI versions have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested evaluating an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software application engineers avoided the term expert system for fear of being seen as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite development in device intelligence, synthetic basic intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not become a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic artificial intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A survey of skilled opinion. In Fundamental issues of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as smart as Siri - however a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI twilight zone in between narrow and basic AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are already seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is arguable, but the consensus is that it is not AGI. ... If nothing else, GPT-3 informs us there is a middle ground in between narrow and general AI. ^ Quach, Katyanna. "A designer constructed an AI chatbot utilizing GPT-3 that helped a man speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can perform over 600 tasks, from playing games to controlling robotics", TechCrunch, archived from the original on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might match human intelligence in 'simply a couple of years,' says CEO of Google's main A.I. research study lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide variety of views in current research, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer system may become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program behaves the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the business's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost exceed benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, risks, strategies (Reprinted with corrections 2017 ed.). Oxford, UK; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that human beings will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security danger' to Australia, Senate questions states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the ramifications of artificial intelligence - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI". The fascinating Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI danger: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report alerts". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard however expert system can not be neglected". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking worries over AI, alert scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder states big tech is lying about AI extinction danger". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market effect potential of big language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of workers could see their jobs affected by AI. These are the tasks most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we require universal standard earnings due to the fact that 'in the future, physical work will be a choice'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, retrieved 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, obtained 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Perspective, archived from the original on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Artificial Intelligence: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The supreme effort is to make computer programs that can solve issues and achieve goals worldwide in addition to people. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, obtained 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York City: Oxford University Press, archived from the initial on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, retrieved 4 September 2013 - via ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what might be called "Dyson's Law") that "Any system easy enough to be understandable will not be made complex enough to behave intelligently, while any system complicated enough to act wisely will be too complicated to understand." (p. 197.) Computer researcher Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead easy silly. They work, however they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from machines. For biological creatures, reason and function come from acting in the world and experiencing the consequences. Expert systems - disembodied, strangers to blood, sweat, and tears - have no celebration for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically anticipate that those who wish to get abundant from AI are going to have the interests of the rest of us close at heart,' ... writes [Gary Marcus] 'We can't rely on governments driven by campaign financing contributions [from tech business] to press back.' ... Marcus details the needs that citizens ought to make from their governments and the tech business. They include transparency on how AI systems work; settlement for individuals if their information [are] utilized to train LLMs (large language design) s and the right to grant this use; and the capability to hold tech business liable for the damages they trigger by removing Section 230, imposing cash penalites, and passing stricter product liability laws ... Marcus also suggests ... that a brand-new, AI-specific federal firm, akin to the FDA, the FCC, or the FTC, might provide the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... develop [ing] an expert licensing routine for engineers that would work in a similar method to medical licenses, malpractice fits, and the Hippocratic oath in medicine. 'What if, like doctors,' she asks ..., 'AI engineers likewise promised to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has baffled humans for years, reveals the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has exposed that although NLP (natural-language processing) models are capable of incredible tasks, their abilities are extremely much limited by the quantity of context they get. This [...] could trigger [difficulties] for researchers who hope to use them to do things such as evaluate ancient languages. In some cases, there are few historic records on long-gone civilizations to function as training information for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to produce phony videos indistinguishable from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply sensible videos produced using synthetic intelligence that really deceive individuals, then they hardly exist. The phonies aren't deep, and wiki.monnaie-libre.fr the deeps aren't fake. [...] A.I.-generated videos are not, in general, operating in our media as counterfeited evidence. Their role better resembles that of animations, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We must prevent humanizing machine-learning models utilized in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of artificial general intelligence are stymmied by the very same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead authorities to overlook contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test but revealed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that require genuine humanlike thinking or an understanding of the physical and social world ... ChatGPT appeared unable to reason rationally and tried to rely on its vast database of ... truths originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are effective however unreliable. Rules-based systems can not handle situations their developers did not prepare for. Learning systems are limited by the information on which they were trained. AI failures have actually currently resulted in catastrophe. Advanced autopilot features in cars, although they carry out well in some scenarios, have driven vehicles without warning into trucks, concrete barriers, and parked automobiles. In the wrong scenario, AI systems go from supersmart to superdumb in an immediate. When an enemy is attempting to manipulate and hack an AI system, the dangers are even higher." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, oke.zone and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by brand-new technologies but count on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.